Affiner votre recherche
Résultats 71-80 de 6,473
Vapor Loss of Volatile Organic Compounds (VOCs) from the Shipping Port of Abadan Petroleum Refinery
2020
Raazi Tabari, M. R. | Sabzalipour, S. | Peyghambarzadeh, S. M. | jalilzadeh, R.
Hydrocarbon storage tanks, the major source of volatile organic compounds (VOCs) emission, have unfavorable effects on atmospheric chemistry and human health. The present study aims at calculating the amount of VOCs’ loss with an emphasis on benzene, toluene, ethylbenzene, and xylene (BTEX). It has been performed by means of TANKs 4.0.9d and WATER9 Software Programs, as well as field measurement for validation. It, then, provides control strategies to reduce the amounts of VOCs in the shipping port area. Emission sources include 32 internal and external floating roof storage tanks, 7 pump houses, and one wastewater treatment pool. Field sampling has been done, using SKC sampling pump and activated carbon adsorption tube according to NIOSH 1501 standard. The obtained samples have been analyzed with FID and GC-MS. Results show that the total emission of VOCs has been equal to 933.25 tons/year, the majority of which (881.74 tons/year ) comes from storage tanks, followed by pump houses and wastewater treatment pool (47.88 and 3.63 tons/year, respectively). BTEX emission includes 1.49 tons/year of benzene, 3.2 tons/year of toluene, 0.57 tons/year of ethylbenzene, and 1.53 tons/year of xylenes. In order to reduce the emission of VOCs from the storage tanks, the paper proposes to change the design of tanks’ roof and sealing. As a result, the total emission of VOCs could be reduced by 18.27%, equivalent to 158.16 tons/year. The total cost of the oil vapors loss is estimated at 253’000 $/year, part of which (i.e., up to 43’000 $/year) could be saved by applying the proposed control strategies.
Afficher plus [+] Moins [-]Taguchi Optimization of Adsorptive Treatment of Effluent from Lead-acid Battery Recycling unit Using Pressmud-a Sugar Industry Waste
2020
Meshram, S. | Thakur, C. | Soni, A. B.
Lead-acid battery recycling is one of the organized process which helps in overcoming the demand of lead for the production of the storage batteries. During recycling, a large amount of effluent is generated which contains lead beyond the permissible limit and harmful for the environment. This effluent was treated by adsorption as an alternative technique by using another waste (pressmud) as an adsorbent obtained from the sugar industry. Properties of the pressmud were determined through Fourier transform infrared spectroscopy, scanning electron microscope and X-ray diffraction analysis. Taguchi method L16 orthogonal array (4^3) was used for batch adsorption study for the parameters, initial pH, adsorbent dose and contact time. The optimum value for the adsorption of Pb(II) onto pressmud was found at effluent pH 4.5, adsorbent dose 1.0 g/50mL and time 240 min from the Signal-to-Noise ratio analysis. Kinetic and isotherm studies were also carried out to understand the mechanism of adsorption. Langmuir isotherm fitted best to the experimental data with R2=0.994 and kinetics of adsorption followed the pseudo-second-order model with R2=0.993.
Afficher plus [+] Moins [-]Cadmium distribution in mature durum wheat grains using dissection, laser ablation-ICP-MS and synchrotron techniques *
2020
Yan, Bofang | Isaure, Marie-Pierre | Mounicou, Sandra | Castillo-Michel, Hiram | De Nolf, Wout | Nguyen, Christophe | Cornu, Jean-Yves
Understanding how essential and toxic elements are distributed in cereal grains is a key to improving the nutritional quality of cereal-based products. The main objective of this work was to characterize the distribution of Cd and of nutrients (notably Cu, Fe, Mn, P, S and Zn) in the durum wheat grain. Laser ablation inductively coupled mass spectrometry and synchrotron micro X-ray fluorescence were used for micro-scale mapping of Cd and nutrients. A dissection approach was used to quantitatively assess the distribution of Cd and nutrients among grain tissues. Micro X-ray absorption near-edge spectroscopy was used to identify the Cd chemical environment in the crease. Cadmium distribution was characterized by strong accumulation in the crease and by non-negligible dissemination in the endosperm. Inside the crease, Cd accumulated most in the pigment strand where it was mainly associated with sulfur ligands. High-resolution maps highlighted very specific accumulation areas of some nutrients in the germ, for instance Mo in the root cortex primordia and Cu in the scutellum. Cadmium loading into the grain appears to be highly restricted. In the grain, Cd co-localized with several nutrients, notably Mn and Zn, which challenges the idea of selectively removing Cd-enriched fractions by dedicated milling process.
Afficher plus [+] Moins [-]Physico-chemical and agronomic results of soil remediation by In Situ Chemical Reduction applied to a chlordecone-contaminated nitisol at plot scale in a French Caribbean banana plantation
2020
Mouvet, Christophe | Collet, Bastien | Gaude, Jean-Marie | Rangon, Luc | Bristeau, Sébastien | Senergues, Mathilde | Lesueur-Jannoyer, Magalie | Jestin, Alexandra | Hellal, Jennifer | Woignier, Thierry
The In Situ Chemical Reduction (ISCR) process was tested in a nitisol in a French Caribbean banana plantation using five different soil amendments. The addition of 2.8% or 4.0% of Zero Valent Iron (ZVI; dw/dw, 2 different trial plots) in the 0–40-cm soil layer lowered the initial chlordecone (CLD) concentration by up to 74% or 69% in 37 days or 94 days, with 75% of the decrease achieved after only 21 or 24 days of treatment depending on the trial plot. The addition of commercially available Daramend® was also tested by applying the 6% dose (dw/dw) recommended by the manufacturer and using either the regular alfalfa-based product or a bagasse-based product specifically formulated for the study. Both significantly lowered CLD concentrations, but to a lesser extent than with the ZVI-only amendment. A bagasse-ZVI mixture prepared on site produced results slightly better than the two Daramend®. The percentage decreases in CLD concentrations were correlated with the negative redox potentials achieved. In all the trial plots, dechlorinated transformation products appeared in the soil and soil water as the CLD concentrations decreased, with H atoms replacing up to 4 and 7 of the 10 Cl atoms, respectively. None of these degradation products appeared to accumulate in the soil or soil water during the treatment. Instead, the reverse occurred, with an overall downward trend in their concentrations over time. The effects of ISCR treatment on agronomic and human health–related parameters were measured in three different crops. The radishes produced with some treatments were visually of lower quality or smaller in size than those grown in the control plots. Lower yields were observed for the cucumbers and sweet potatoes grown after applying the bagasse-based amendments. Mortality among cucumber seedlings was observed after treatment with ZVI only. Simple operational solutions should suffice to remedy these negative agronomic effects. As regards human health–related effects, the CLD concentrations in radishes grown with three of the amendments were significantly lower than in the two control plots and well below the maximum residue level (MRL), which was substantially exceeded in the radishes grown on untreated soil. For cucumbers, the treatments with regular Daramend® and with a local bagasse-ZVI mixture produced fruits with CLD below the MRL and also below the concentrations in one of the two control plots. As for the sweet potatoes, adding a bagasse-ZVI mixture had a significant positive effect by decreasing contamination below the levels in the two control plots and below the MRL.
Afficher plus [+] Moins [-]Analysis of surface water reveals land pesticide contamination: An application for the determination of chlordecone-polluted areas in Guadeloupe, French West Indies
2020
Rochette, Romain | Bonnal, Vincent | Andrieux, Patrick | Cattan, Philippe
In Guadeloupe, the use between 1972 and 1993 of chlordecone, an organochlorine insecticide, has permanently contaminated the island's soil, thus contaminating the food chain at its very beginning. There is today a strong societal requirement for an improved mapping of the contaminated zones. Given the extent of the areas to be covered, carrying out soil tests on each plot of the territory would be a long and expensive process. In this article, we explore a method of demarcating polluted areas. The approach adopted consists in carrying out, using surface water analyses, a hydrological delimitation that makes it possible to distinguish contaminated watersheds from uncontaminated ones. The selection of sampling points was based on the spatial analysis of the actual and potential contamination data existing at the beginning of the study. The approach was validated by soil analyses, after having compared the contamination data of the watersheds with the soil contamination data of the plots within them. The study thus made it possible to highlight new contaminated areas and also those at risk of contamination and to identify the plots to be targeted as a priority during future analysis campaigns by State services.
Afficher plus [+] Moins [-]Physical limitation of pesticides (chlordecone) decontamination in volcanic soils: Fractal approach and numerical simulation
2020
Woignier, Thierry | Rangon, Luc | Clostre, Florence | Mottes, Charles | Cattan, Philippe | Primera, Philippe | Jannoyer, Magalie
In the French West Indies, the chlordecone (organochloride pesticide) pollution is now diffuse becoming new contamination source for crops and environment (water, trophic chain). Decontamination by bioremediation and chemical degradation are still under development but the physical limitations of these approaches are generally not taken into account. These physical limitations are related to the poor physical accessibility to the pesticides in soils because of the peculiar structural properties of the contaminated clays (pore volume, transport properties, permeability, and diffusion). Some volcanic soils (andosols), which represent the half of the contaminated soils in Martinique, contain nanoclay (allophane) with a unique structure and porous properties. Andosols are characterized by pore size distribution in the mesoporous range, a high specific surface area, a large pore volume, and a fractal structure. Our hypothesis is that the clay microstructure characteristics are crucial physico-chemical factors strongly limiting the remediation of the pesticide. Our results show that allophane microstructure (small pore size, hierarchical microstructure, and tortuosity) favors accumulation of chlordecone, in andosols. Moreover, the clay microporosity limits the accessibility of microorganisms and chemical species able to decontaminate because of poor transport properties (permeability and diffusion). We model the transport properties by two approaches: (1) we use a numerical model to simulate the structure of allophane aggregates. The algorithm is based on a cluster–cluster aggregation model. From the simulated data, we derived the pore volume, specific surface area, tortuosity, permeability, and diffusion. We show that transport properties strongly decrease because of the presence of allophane. (2) The fractal approach. We characterize the fractal features (size of the fractal aggregate, fractal dimension, tortuosity inside allophane aggregates) and we calculate that transport properties decrease of several order ranges inside the clay aggregates. These poor transport properties are important parameters to explain the poor accessibility to pollutants in volcanic soils and should be taken into account by future decontamination process. We conclude that for andosols, this inaccessibility could render inefficient some of the methods proposed in the literature.
Afficher plus [+] Moins [-]Spatio-temporal variability of water pollution by chlordecone at the watershed scale: what insights for the management of polluted territories?
2020
Mottes, Charles | Deffontaines, Landry | Charlier, Jean-Baptiste | Comte, Irina | Della Rossa, Pauline | Lesueur Jannoyer, Magalie | Woignier, Thierry | Adele, Georges | Tailame, Anne-Lise | Arnaud, Luc | Plet, Joanne | Rangon, Luc | Bricquet, Jean-Pierre | Cattan, Philippe
Chlordecone, applied on soils until 1993 to control banana weevil, has polluted water resources in the French West Indies for more than 40 years. At the watershed scale, chlordecone applications were not homogenous, generating a spatial heterogeneity of the pollution. The roles of climate, hydrology, soil, agronomy, and geology on watershed functioning generate a temporal heterogeneity of the pollution. This study questions the interactions between practices and the environment that induce such variability. We analyzed hydrological and water pollution datasets from a 2-year monitoring program on the Galion watershed in Martinique (French West Indies). We conjointly analyzed (i) weekly chlordecone (CLD) concentration monitored on 3 river sampling sites, (ii) aquifer piezometric dynamics and pollutions, and (iii) agricultural practices on polluted soils. Our results showed that chlordecone pollution in surface waters are characterized by annual trends and infra-annual variations. Aquifers showed CLD concentration 10 times higher than surface water, with CLD concentration peaks during recharge events. We showed strong interactions between rainfall events and practices on CLD pollution requiring a systemic management approach, in particular during post-cyclonic periods. Small sub-watershed with high CLD pollution appeared to be a substantial contributor to CLD mass transfers to the marine environment via rivers and should therefore receive priority management. We suggest increasing stable organic matter return to soil as well as external input of organic matter to reduce CLD transfers to water. We identified hydrological conditions—notably drying periods—and tillage as the most influential factors on CLD leaching. In particular, tillage acts on 3 processes that increases CLD leaching: organic matter degradation, modification of water paths in soil, and allophane clay degradation.
Afficher plus [+] Moins [-]In vitro differential responses of rat and human aryl hydrocarbon receptor to two distinct ligands and to different polyphenols
2020
Doan, Thi-Que | Connolly, L. | Igout, Ahmed | Muller, Marc | Scippo, Marie-Louise | FARAH - Fundamental and Applied Research for Animals and Health - ULiège | GIGA‐R - Giga‐Research - ULiège
peer reviewed | Protected
Afficher plus [+] Moins [-]Silver nanoparticles induce histopathological alterations in juvenile Penaeus vannamei
2020
María Cristina Chávez Sánchez | SELENE MARIA ABAD ROSALES | Rodolfo Lozano Olvera | LEOBARDO MONTOYA RODRIGUEZ | MIGUEL ANGEL FRANCO NAVA | CLAUDIO HUMBERTO MEJIA RUIZ | Alexey Pestryakov | NINA BOGDANCHIKOVA
"The objective of this study was to evaluate the histopathological alterations in juvenile Penaeus vannamei caused by silver nanoparticles (AgNPs) for two types of experiments: at sublethal concentrations of 3.6 to 7.1 μg/μL of metallic silver (Ag) for a short period up to 72 h and for 2.6 to 7.9 μg ofAg/μL for the long period up to 264 h. The severity degree of the changes was evaluated and the histopathological index (Hi) was determined in both experiments using the necrosis (cellular dead) as an indicator. The pathological changes in the striated muscle, gills, antennal gland, circulatory system, heart, lymphoid organ, and connective tissue are described. The histopathological effects were similar for the two experiments without a direct relationship with the concentrations. In the short-term experiment, the values of Hi were higher (2.34 ± 0.41 at 48 hpi and 1.91 ± 0.39 at 72 hpi) compared with the long-term experiment (values between 0.57 ± 0.36 to 1.74 ± 0.57 at 264 hpi). The observed pathologies are similar to those caused by othermetals, with the exception of the agglomerations of black particles in the gills, lymphoid organ, and muscle, which has not been previously reported. This work shows that silver nanoparticles cause damage to shrimp in sublethal concentrations."
Afficher plus [+] Moins [-]Per-and polyfluoroalkyl substances (PFASs) in Contaminated Coastal Marine Waters of the Saudi Arabian Red Sea: A baseline study
2020
Ali, Aasim Musa Mohamed | Higgins, Christopher | Alarif, Walied | Al-Lihaibi, Sultan | Ghandourah, Mohammed | Kallenborn, Roland
publishedVersion | Per- and polyfluoroalkyl substances (PFASs) are today considered important constituents of the continuously growing substance group of persistent contaminants of emerging environmental concern (PCEC). Here, we report for the first time the concentrations of 12 relevant PFASs in 28 marine water samples from the Saudi Arabian coastal waters of the Red Sea. The sum levels of 12 PFASs (Σ12 PFAS) in surface seawater ranged from <LOQ to 956 ngL−1. For the reference background site of this study, Σ12 PFAS levels ranged from <LOQ to 10.9 ng/L. The highest PFAS levels have been found in Al-Arbaeen and Al-Shabab, two lagoons continuously receiving treated sewage effluents. PFHxA, PFHxS, and 6:2 FTS were the most prevalent PFASs with relatively high concentrations. Discharge of municipal and industrial wastewaters is considered an important source of PFASs. The pattern of PFASs observed here suggests that the usage of PFAS-containing aqueous film-forming foams (AFFFs) is a potential additional source for these compounds in Al-Arbaeen and Al-Shabab lagoons. However, a systematic elucidation of local PFASs sources is needed. Contamination of the Red Sea waters with PFASs poses a potential imminent risk to the marine environment of the Red Sea and ultimately may even affect the health of human consumers through the consumption of local seafood
Afficher plus [+] Moins [-]