Affiner votre recherche
Résultats 731-740 de 6,560
A preliminary analysis of microplastics in edible versus non-edible tissues from seafood samples Texte intégral
2020
Akoueson, Fleurine | Sheldon, Lisa M. | Danopoulos, Evangelos | Morris, Steve | Hotten, Jessica | Chapman, Emma | Li, Jiana | Rotchell, Jeanette M.
Plastics have been widely reported to be present in the environment yet there are still many questions regarding the extent of this and the impacts these may have on both the environment and human health. The purpose of this investigation is to determine levels of micro and mesoplastic (MP), in the 1–5000 μm range, in commercially important species of finfish and shellfish. Additionally, to determine and compare the relative MP levels in edible versus non-edible tissues, and consider the wider implications in terms of human health concerns with a preliminary risk identification approach. For several fish species, samples taken from typically non-edible (gills, digestive system) and edible (muscle) flesh, and were analysed separately. Scallops, where all tissues are edible, were analysed whole. Significant differences were observed in the number of particles isolated from the finfish gills and digestive tissues relative to the control samples, but not in the edible flesh. For scallops, the abundance of particles in the Scottish samples did not vary significantly from the control, while the Patagonian scallops displayed significantly higher numbers of MPs. Characterisation of MPs by FTIR microscopy found that 16–60% (depending on species) were polyethylene terephthalate (PET) and polyethylene (PE) in origin. The risk identification results validate MPs as an emerging risk in the food chain and establish seafood as a vector for the exposure and uptake of MPs through the ingestion route for humans. Levels of MPs in seafood, and a direct link to the human food chain, suggests that their quantification be included as one food safety measure.
Afficher plus [+] Moins [-]Neurotoxicity of perfluorooctanoic acid and post-exposure recovery due to blueberry anthocyanins in the planarians Dugesia japonica Texte intégral
2020
Zhang, Jianyong | Shao, Xinxin | Zhao, Baoying | Zhai, Liming | Liu, Na | Gong, Fangbin | Ma, Xue | Pan, Xiaolu | Zhao, Bosheng | Yuan, Zuoqing | Zhang, Xiufang
Perfluorooctanoic acid (PFOA) is a widely used synthetic industrial chemical which accumulates in ecosystems and organisms. Our study have investigated the neurobehavioral effects of PFOA and the alleviation effects of PFOA-induced neurotoxicity by blueberry anthocyanins (ANT) in Dugesia japonica. The planarians were exposed to PFOA and ANT for ten days. Researchs showed that exposure to PFOA affected locomotor behavior and ANT significantly alleviated the reduction in locomotion induced by PFOA. The regeneration of eyespots and auricles was suppressed by PFOA and was promoted by ANT. Following exposure to PFOA, acetylcholinesterase activity continually decreased and was unaffected in the ANT group, but was elevated after combined administration of PFOA and ANT. Oxidative DNA damage was found in planarians exposed to PFOA and was attenuated after administration of ANT by the alkaline comet assay. Concentrations of three neurotransmitters increased following exposure to PFOA and decreased after administration of ANT. Furthermore, ANT promoted and PFOA inhibited neuronal regeneration. DjotxA, DjotxB, DjFoxG, DjFoxD and Djnlg associated with neural processes were up-regulated following exposure to PFOA. Our findings indicate that PFOA is a neurotoxicant while ANT can attenuate these detrimental effects.
Afficher plus [+] Moins [-]Developmental exposure to lead at environmentally relevant concentrations impaired neurobehavior and NMDAR-dependent BDNF signaling in zebrafish larvae Texte intégral
2020
Zhao, Jing | Zhang, Qing | Zhang, Bin | Xu, Ting | Yin, Daqiang | Gu, Weihua | Bai, Jianfeng
Lead (Pb) is one of the predominant heavy metals in e-waste recycling arears and recognized as a notorious environmental neurotoxic substance. However, whether Pb at environmentally relevant concentrations could cause neurobehavioral alteration and even what kind of signaling pathway Pb exposure would disrupt in zebrafish were not fully uncovered. In the present study, 6 h postfertilization (hpf) zebrafish embryos were exposed to Pb at the concentrations of 0, 5, 10, and 20 μg/L until 144 hpf. Then the neurobehavioral indicators including locomotor, turnings and social behaviors, and the expressions of selected genes concerning brain-derived neurotrophic factor (BDNF) signaling were investigated. The results showed that significant changes were obtained under 20 μg/L Pb exposure. The hypoactivity of zebrafish larvae in locomotor and turning behaviors was induced during the dark period, while hyperactivity was observed in a two-fish social assay during the light period. The significantly downregulation of genes encoding BDNF, its receptor TrkB, and N-methyl-D-aspartate glutamate receptor (NMDAR) suggested the involvement of NMDAR-dependent BDNF signaling pathway. Overall, our study demonstrated that developmental exposure to Pb at environmentally relevant concentrations caused obvious neurobehavioral impairment of zebrafish larvae by disrupting the NMDAR-dependent BDNF signaling, which could exert profound ecological consequences in the real environment.
Afficher plus [+] Moins [-]The toxicity of graphene oxide affected by algal physiological characteristics: A comparative study in cyanobacterial, green algae, diatom Texte intégral
2020
Yin, Jingyu | Fan, Wenhong | Du, Juan | Feng, Weiying | Dong, Zhaomin | Liu, Yingying | Zhou, Tingting
Though the main toxic mechanisms of graphene oxide (GO) to algae have been accepted as the shading effect, oxidative stress and mechanical damage, the effect of algal characteristics on these three mechanisms of GO toxicity have seldom been taken into consideration. In this study, we investigated GO toxicity to green algae (Chlorella vulgaris, Scenedesmus obliquus, Chlamydomonas reinhardtii), cyanobacteria (Microcystis aeruginosa) and diatoms (Cyclotella sp.). The aim was to assess how the physiological characteristics of algae affect the toxicity of GO. Results showed that 10 mg/L of GO significantly inhibited the growth of all tested algal types, while S. obliquus and C. reinhardtii were found to be the most susceptible and tolerant species, respectively. Then, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to observe the physiological characteristics of the assessed algae. The presence of locomotive organelles, along with smaller and more spherical cells, was more likely to alleviate the shading effect. Variations in cell wall composition led to different extents of mechanical damage as shown by Cyclotella sp. silica frustules and S. obliquus autosporine division being prone to damage. Meanwhile, growth inhibition and cell division were significantly correlated with the oxidative stress and membrane permeability, suggesting the latter two indicators can effectively signal GO toxicity to algae. The findings of this study provide novel insights into the toxicity of graphene materials in aquatic environments.
Afficher plus [+] Moins [-]Thallium exposure at low concentration leads to early damage on multiple organs in children: A case study followed-up for four years Texte intégral
2020
Duan, Weixia | Wang, Yongyi | Li, Zhiqiang | Fu, Guanyan | Mao, Longchun | Song, Yunbo | Qu, Yaping | Ye, Lvsu | Zhou, Qu | Yang, Fucheng | Hu, Zhide | Xu, Shangcheng
Thallium (TI) is one of the most toxic heavy metals and priority pollutant metals. The emerging TI environmental pollution worldwide has posed a great threat to human health. However, based on the World Health Organization (WHO), the risk and severity of adverse health effects of TI in the range of 5–500 μg/L are uncertain. Moreover, evidence regarding the adverse impacts of TI on children’s health is still insufficient. Herein, we aim to investigate the early adverse effects of TI on children’s health and provide references for the WHO to establish stricter safety limits of TI. From 2015 to 2019, urinary TI and many clinical laboratory parameters related to blood routine, hepatic, renal, myocardial, coagulation function and serum electrolyte were measured in six children aged 1–9 years. The urinary TI concentration ranged from 13.4 μg/L to 60.1 μg/L with a mean of 36.1 μg/L and a median of 34.8 μg/L in six children in 2015. Although only four children felt a little poor appetite, several laboratory abnormalities indicated early damage in liver, renal, and myocardial functions in all children in 2015. After treatment and following up for four years, although the children’s TI concentration decreased below 5 μg/L, their liver and renal functions did not completely recover, and their myocardial function worsened. Results indicated that impaired liver, renal, and myocardial functions were closely associated with elevated urinary TI concentration in children. Considering the increasing use of TI in high-technology industries and emerging TI environmental-contamination zones worldwide, establishing stricter safety limits of TI and paying more attention to the adverse health effects of TI on children are urgently required.We found that a relatively low concentration of thallium (13.4 μg/L to 60.1 μg/L) impaired liver, renal, and myocardial function in six children. After treatment and following up these children for four years, although their urinary TI concentration decreased below 5 μg/L, their liver and renal functions did not completely recover, and their myocardial function worsened.
Afficher plus [+] Moins [-]Comparison of receptor models for source identification of organophosphate esters in major inflow rivers to the Bohai Sea, China Texte intégral
2020
Qi, Yanjie | Liu, Xing | Wang, Zhen | Yao, Ziwei | Yao, Wenjun | Shangguan, Kuixing | Li, Minghao | Ming, Hongxia | Ma, Xindong
A better understanding of the sources of organophosphate esters (OPEs) is a prerequisite for OPE control and the establishment of related environmental policies. Sources of OPEs in 35 major inflow rivers to the Bohai Sea of China were quantitatively analyzed using three effective receptor models (principal component analysis-multiple linear regression (PCA-MLR), positive matrix factorization (PMF), and Unmix) in this paper. The similarities and differences in results from PCA-MLR, PMF, and Unmix were discussed in depth. All three models well predicted the spatial variability of the total concentrations of nine OPEs (triethyl phosphate, tri-n-butyl phosphate, triisobutyl phosphate, tri (2-ethylhexyl) phosphate, tri (2-chloroethyl) phosphate, tris(1-chloro-2-propyl) phosphate, tris(1,3-dichloro-2-propyl) phosphate, triphenyl phosphate, and triphenylphosphine oxide) (∑₉OPEs) (r² = 0.90–0.96, p = 0.000) and explained 98.4%–101.2% of the observed ∑₉OPEs. The predicted ∑₉OPEs values from each pairwise model were significantly correlated (r² = 0.88–0.91, p = 0.000). Three OPE sources were extracted by all three models: rigid and flexible polyurethane foam/coating, cellulosic/acrylic/vinyl polymer/unsaturated polyester, and polyvinyl chloride, contributing 49.9%, 29.7%, and 20.5% by PCA-MLR, 57.9%, 28.6%, and 13.5% by PMF, and 47.9%, 30.8%, and 22.4% by Unmix to the ∑₉OPEs, respectively. PMF was recommended as the preferred receptor model for analyzing OPE sources in water during the monitoring period because of its optimal performance.
Afficher plus [+] Moins [-]Influences of high-level atmospheric gaseous elemental mercury on methylmercury accumulation in maize (Zea mays L.) Texte intégral
2020
Sun, Ting | Wang, Zhangwei | Zhang, Xiaoshan | Niu, Zhenchuan | Chen, Jian
Maize (Zea mays L.) leaves play an important role in stomatal uptake and surface adsorption of atmospheric mercury (Hg). However, the influence of atmospheric gaseous elemental mercury (GEM) on methylmercury (MeHg) accumulation in maize plants is poorly understood. In this study, we conducted a field open-top chambers (OTCs) experiment and a soil Hg-enriched experiment to investigate the response of MeHg accumulation in maize tissues to different GEM levels in the air. Maize upper leaves had a higher average MeHg concentration (0.21 ± 0.08 ng g⁻¹) than bottom leaves (0.15 ± 0.05 ng g⁻¹) in the OTCs experiment, which was inconsistent with that in the soil Hg-enriched experiment (maize upper leaves: 0.41 ± 0.07 ng g⁻¹, maize bottom leaves: 0.60 ± 0.05 ng g⁻¹). Additionally, significantly positive correlations were found between MeHg concentrations in maize leaves and air Hg levels, suggesting that elevated air Hg levels enhanced MeHg accumulation in maize leaves, which was possibly attributed to methylation of Hg on leaf surfaces. Mature maize grains from the OTCs experiment had low MeHg concentrations (0.12–0.23 ng g⁻¹), suggesting a low accumulation capability of MeHg by maize grains. Approximately 93–96% of MeHg and 51–73% of total Hg in maize grains were lost from the grain-filling stage to the grain-ripening stage at all GEM level treatments, implying that self-detoxification in maize grains occurred. MeHg concentrations in maize roots showed a significant linear relationship (R² = 0.98, p < 0.01) with soil Hg levels, confirming that MeHg in maize roots is primarily from soil. This study provides a new finding that elevated air GEM levels could enhance MeHg accumulation in maize leaves, and self-detoxification may occur in maize grains. Further studies are needed to clarify these mechanisms of Hg methylation on maize leaf surfaces and self-detoxification of Hg by maize grains.
Afficher plus [+] Moins [-]Determination of dry deposition velocity of polycyclic aromatic hydrocarbons under the sub-tropical climate and its implication for regional cycling Texte intégral
2020
Dotel, Jagdish | Gong, Ping | Wang, Xiaoping | Pokhrel, Balram | Wang, Chuanfei | Nawab, Javed
Atmospheric dry deposition is a major pathway for removal of polycyclic aromatic hydrocarbons (PAHs) from the atmosphere. Despite its significance in the atmospheric environment, measurements of the dry deposition velocity (VDD) and deposition fluxes (FDD) of PAHs are relatively limited. In this study, a passive dry deposition (PAS-DD) collector was co-deployed with passive air sampler polyurethane foam (PAS-PUF) from November 2015 to November 2016 in two major cities (Kathmandu and Pokhara), Nepal, to investigate the VDD and FDD of PAHs. The VDD of PAHs ranged from 0.25 to 0.5 cm s⁻¹ and the annual average was recorded as 0.37 ± 0.08 cm s⁻¹. On the basis of measured VDD, the FDD of ∑15PAHs in Kathmandu and Pokhara were estimated as 66 and 5 kg yr⁻¹ respectively. According to the measured VDD of Kathmandu and Pokhara in this study, and the previously published VDD data of Toronto, Canada, where the same PAS-DD collector was used, a significant multi-linear correlation (r² = 0.79, p < 0.05) was found between VDD of higher molecular weight (HMW with MW ≥ 228.3 and ≥ 4 rings) PAHs and meteorological parameters (precipitation and wind speed) and vapor pressure of PAHs. To the best of our knowledge, this enabled the development of an empirical model that can exhibit the combined effects of meteorological conditions on the VDD of HMW PAHs. The model was used to estimate the VDD values for major cities in the Indo-Gangetic Plain (IGP) region and the maximum estimated proportion of HMW PAHs deposited by dry deposition reached up to 60% of total emissions. Although PAH emissions in the IGP region pose global risks, the results of this study highlight the considerable risk for local IGP residents, due to the large dry deposition proportion of HMW PAHs.
Afficher plus [+] Moins [-]Accumulation characteristics and biological response of ginger to sulfamethoxazole and ofloxacin Texte intégral
2020
Lv, Yao | Xu, Jiamin | Xu, Kun | Liu, Xiaohui | Guo, Xiaochun | Lu, Shaoyong | Xi, Beidou
The potential risk to human health of antibiotics that pass through the food chain has become an important global issue, but there are few reports on the response of ginger (Zingiber officinale) to antibiotic pollution. In this study, we investigated the enrichment characteristics and biological response of ginger to sulfamethoxazole (SMZ) and ofloxacin (OFL) residues, which are common in the environment. Lower levels of SMZ, OFL and their combined duplex treatment (SMZ+OFL) promoted the growth of ginger, but the critical doses necessary to stimulate growth differed among treatments: 10 mg L⁻¹ SMZ, 1 mg L⁻¹ OFL and 1 mg L⁻¹ (SMZ+OFL) had the strongest stimulating effects. At higher dosages, the root growth and light energy utilization efficiency of ginger were impaired, and (SMZ+OFL) had the strongest inhibitory effect. Treatments with lower levels of antibiotics had no significant effect on reactive oxygen species and antioxidant enzyme activities. However, when SMZ, OFL and SMZ+OFL concentrations exceeded 10 mg L⁻¹, the contents of H₂O₂, O₂⁻ and MDA continued to increase, while the activities of SOD, POD, CAT first increased and then decreased, especially in SMZ+OFL. Ginger accumulated more SMZ and OFL in rhizomes and less in leaves, and accumulation increased significantly as antibiotic concentration increased. When SMZ concentration was 1 mg L⁻¹, the SMZ concentrations in rhizomes, roots, and leaves were 0.23, 0.15, and 0.05 mg kg⁻¹, respectively, and the residual SMZ in the rhizome was 2.3 times higher than the maximum residue limit. The abundance of the resistance genes sul1, sul2, qnrS, and intI1 increased with increasing antibiotic concentrations, and intI1 abundance was the highest. OFL induced higher levels of intI1 expression than did SMZ.
Afficher plus [+] Moins [-]Investigating the distribution and regional occurrence of anthropogenic litter in English marine protected areas using 25 years of citizen-science beach clean data Texte intégral
2020
Nelms, Sarah E. | Eyles, Lauren | Godley, Brendan J. | Richardson, Peter B. | Selley, Hazel | Solandt, Jean-Luc | Witt, Matthew J.
Marine Protected Areas (MPAs) are designated to enable the management of damaging activities within a discrete spatial area, and can be effective at reducing the associated impacts, including habitat loss and over-exploitation. Such sites, however, may be exposed to the potential impacts from broader scale pressures, such as anthropogenic litter, due to its diffuse nature and lack of constraint by legislative and/or political boundaries. Plastic, a large component of litter, is of particular concern, due to increasing evidence of its potential to cause ecological and socio-economic damage. The presence of sensitive marine features may mean that some MPAs are at greater potential risk from the impacts of plastic pollution than some non-protected sites. Understanding the abundance, distribution and composition of litter along coastlines is important for designing and implementing effective management strategies. Gathering such data, however, can be expensive and time-consuming but litter survey programmes that enlist citizen scientists are often able to resolve many of the logistical or financial constraints. Here, we examine data collected over 25-years (1994–2018), by Marine Conservation Society volunteers, for spatial patterns in relation to the English MPA network, with the aim of highlighting key sources of litter and identifying management priority areas. We found that MPAs in southeast (Kent) and southwest (Cornwall and Devon) England have the highest densities of shore-based litter. Plastic is the main material constituent and public littering the most common identifiable source. Items attributed to fishing activities were most prevalent in southwest MPAs and sewage related debris was highest in MPAs near large rivers and estuaries, indicating localised accumulation. When comparing inside and outside of MPAs, we found no difference in litter density, demonstrating the need for wider policy intervention at local, national and international scales to reduce the amount of litter.
Afficher plus [+] Moins [-]