Affiner votre recherche
Résultats 731-740 de 7,988
Co-occurring microorganisms regulate the succession of cyanobacterial harmful algal blooms
2021
Wang, Kai | Mou, Xiaozhen | Cao, Huansheng | Struewing, Ian | Allen, Joel | Lu, Jingrang
Cyanobacterial harmful algal blooms (CyanoHABs) have been found to transmit from N₂ fixer-dominated to non-N₂ fixer-dominated in many freshwater environments when the supply of N decreases. To elucidate the mechanisms underlying such “counter-intuitive” CyanoHAB species succession, metatranscriptomes (biotic data) and water quality-related variables (abiotic data) were analyzed weekly during a bloom season in Harsha Lake, a multipurpose lake that serves as a drinking water source and recreational ground. Our results showed that CyanoHABs in Harsha Lake started with N₂-fixing Anabaena in June (ANA stage) when N was high, and transitioned to non-N₂-fixing Microcystis- and Planktothrix-dominated in July (MIC-PLA stage) when N became limited (low TN/TP). Meanwhile, the concentrations of cyanotoxins, i.e., microcystins were significantly higher in the MIC-PLA stage. Water quality results revealed that N species (i.e., TN, TN/TP) and water temperature were significantly correlated with cyanobacterial biomass. Expression levels of several C- and N-processing-related cyanobacterial genes were highly predictive of the biomass of their species. More importantly, the biomasses of Microcystis and Planktothrix were also significantly associated with expressions of microbial genes (mostly from heterotrophic bacteria) related to processing organic substrates (alkaline phosphatase, peptidase, carbohydrate-active enzymes) and cyanophage genes. Collectively, our results suggest that besides environmental conditions and inherent traits of specific cyanobacterial species, the development and succession of CyanoHABs are regulated by co-occurring microorganisms. Specifically, the co-occurring microorganisms can alleviate the nutrient limitation of cyanobacteria by remineralizing organic compounds.
Afficher plus [+] Moins [-]Enabling a large-scale assessment of litter along Saudi Arabian red sea shores by combining drones and machine learning
2021
Martin, Cecilia | Zhang, Qiannan | Zhai, Dongjun | Zhang, Xiangliang | Duarte, Carlos M.
Beach litter assessments rely on time inefficient and high human cost protocols, mining the attainment of global beach litter estimates. Here we show the application of an emerging technique, the use of drones for acquisition of high-resolution beach images coupled with machine learning for their automatic processing, aimed at achieving the first national-scale beach litter survey completed by only one operator. The aerial survey had a time efficiency of 570 ± 40 m² min⁻¹ and the machine learning reached a mean (±SE) detection sensitivity of 59 ± 3% with high resolution images. The resulting mean (±SE) litter density on Saudi Arabian shores of the Red Sea is of 0.12 ± 0.02 litter items m⁻², distributed independently of the population density in the area around the sampling station. Instead, accumulation of litter depended on the exposure of the beach to the prevailing wind and litter composition differed between islands and the main shore, where recreational activities are the major source of anthropogenic debris.
Afficher plus [+] Moins [-]Consumption of field-realistic doses of a widely used mito-toxic fungicide reduces thorax mass but does not negatively impact flight capacities of the honey bee (Apis mellifera)
2021
Glass, Jordan R. | Fisher, Adrian | Fewell, Jennifer H. | DeGrandi-Hoffman, Gloria | Ozturk, Cahit | Harrison, Jon F.
Commercial beekeepers in many locations are experiencing increased annual colony losses of honey bees (Apis mellifera), but the causes, including the role of agrochemicals in colony losses, remain unclear. In this study, we investigated the effects of chronic consumption of pollen containing a widely-used fungicide (Pristine®), known to inhibit bee mitochondria in vitro, which has recently been shown to reduce honey bee worker lifespan when field-colonies are provided with pollen containing field-realistic levels of Pristine®. We fed field colonies pollen with a field-realistic concentration of Pristine® (2.3 ppm) and a concentration two orders of magnitude higher (230 ppm). To challenge flight behavior and elicit near-maximal metabolic rate, we measured flight quality and metabolic rates of bees in two lower-than-normal air densities. Chronic consumption of 230 but not 2.3 ppm Pristine® reduced maximal flight performance and metabolic rates, suggesting that the observed decrease in lifespans of workers reared on field-realistic doses of Pristine®-laced pollen is not due to inhibition of flight muscle mitochondria. However, consumption of either the 230 or 2.3 ppm dose reduced thorax mass (but not body mass), providing the first evidence of morphological effects of Pristine®, and supporting the hypothesis that Pristine® reduces forager longevity by negatively impacting digestive or nutritional processes.
Afficher plus [+] Moins [-]Evaluation of the combined effect of elevated temperature and cadmium toxicity on Daphnia magna using a simplified DEBtox model
2021
Na, Joorim | Kim, Yongeun | Song, Jinyoung | Shim, Taeyong | Cho, Kijong | Jung, Jinho
Thermal discharge and heatwaves under climate change may increase water temperature. In this study, the individual and combined effect of elevated temperature and cadmium (Cd) toxicity on somatic growth and reproduction of Daphnia magna was evaluated using a simplified dynamic energy budget model (DEBtox). The model predicted that the maximum body length (Lₘ) would be shorter (3.705 mm) at an elevated temperature of 25 °C than at 20 °C (3.974 mm), whereas the maximum reproduction rate (R˙m) would be higher at 25 °C (5.735) than at 20 °C (5.591). The somatic growth and reproduction of D. magna were significantly (p < 0.05) reduced with increasing Cd concentrations, and the reduction was greater at 25 than at 20 °C. Potentiation of Cd toxicity by elevated temperature was correctly simulated by assuming four toxicological modes of action influencing assimilation, somatic maintenance and growth, and reproduction. Overall, the population growth rate of D. magna was expected to decrease linearly with increasing Cd concentrations, and the decrease was expected to be higher at 25 than at 20 °C. These findings suggest a significant ecological risk of toxic metals at elevated temperature, with a mechanistic interpretation of the potentiation effect using a DEBtox modeling approach.
Afficher plus [+] Moins [-]Effects of seawater scrubbing on a microplanktonic community during a summer-bloom in the Baltic Sea
2021
Ytreberg, Erik | Karlberg, Maria | Hassellöv, Ida-Maja | Hedblom, Mikael | Nylund, Amanda T. | Salo, Kent | Imberg, Henrik | Turner, David | Tripp, Lucy | Yong, Joanne | Wulff, Angela
The International Maritime Organization (IMO) has gradually applied stricter regulations on the maximum sulphur content permitted in marine fuels and from January 1, 2020, the global fuel sulphur limit was reduced from 3.5% to 0.5%. An attractive option for shipowners is to install exhaust gas cleaning systems, also known as scrubbers, and continue to use high sulphur fuel oil. In the scrubber, the exhausts are led through a fine spray of water, in which sulphur oxides are easily dissolved. The process results in large volumes of acidic discharge water, but while regulations are focused on sulphur oxides removal and acidification, other pollutants e.g. polycyclic aromatic hydrocarbons, metals and nitrogen oxides can be transferred from the exhausts to the washwater and discharged to the marine environment. The aim of the current study was to investigate how different treatments of scrubber discharge water (1, 3 and 10%) affect a natural Baltic Sea summer microplanktonic community. To resolve potential contribution of acidification from the total effect of the scrubber discharge water, “pH controls” were included where the pH of natural sea water was reduced to match the scrubber treatments. Biological effects (e.g. microplankton species composition, biovolume and primary productivity) and chemical parameters (e.g. pH and alkalinity) were monitored and analysed during 14 days of exposure. Significant effects were observed in the 3% scrubber treatment, with more than 20% increase in total biovolume of microplankton compared to the control group, and an even greater effect in the 10% scrubber treatment. Group-specific impacts were recorded where diatoms, flagellates incertae sedis, chlorophytes and ciliates increased in biovolume with increasing concentrations of scrubber water while no effect was recorded for cyanobacteria. In contrast, these effects was not observed in the “pH controls”, a suggestion that other parameters/stressors in the scrubber water were responsible for the observed effects.
Afficher plus [+] Moins [-]Nitrogen flows associated with food production and consumption system of Shanghai
2021
Liao, Chengsong | Xia, Yuling | Wu, Dianming
The release of reactive nitrogen (Nᵣ) from food production and consumption constitute the primary source of nitrogen pollution. However, nitrogen flows and the driving factors of food chain of Shanghai, China have not been previously studied. Here, we used a substance flow analysis model to analyze the changes in Nᵣ inputs and outputs in agricultural production, livestock and poultry farming, and food consumption related to the Shanghai food chain between 2000 and 2018. The driving forces of Nᵣ inputs, Nᵣ use efficiency, and Nᵣ surpluses/deficits in the food production and consumption system were also investigated. The results indicated that the main sources of Nᵣ input in the food production and consumption system were nitrogen fertilizers, livestock and poultry feed from external sources, and plant-based foods, which accounted for 36.28–59.45% of Nᵣ input in agricultural production, 37.32–76.57% of Nᵣ input in livestock and poultry farming, and 35.38–59.37% of Nᵣ input in food consumption, respectively. The main forms of Nᵣ outputs were surplus nitrogen in the soil, excretal nitrogen from livestock and poultry animals, and excretal nitrogen from humans, which accounted for 38.2–48.89% of Nᵣ output in agricultural production, 36.78–55.18% of Nᵣ output in livestock and poultry farming, and 85.36% of Nᵣ output in food consumption, respectively. From 2000 to 2018, the Nᵣ inputs per unit area from agricultural production decreased at a rate of 20.42% before 2012, and then increased at a rate of 5.72%. Moreover, the Nᵣ use efficiency of agricultural production component of Shanghai was at a low level, only 18.43–27.6%. Cultivation area of crops was the main driving forces of the Nᵣ input to food production and consumption system. These results provide essential data for controlling nitrogen pollution caused by Shanghai food production and consumption, which can serve as a reference for administrative agencies in formulating policies.
Afficher plus [+] Moins [-]PAHs and their hydroxylated metabolites in the human fingernails from e-waste dismantlers: Implications for human non-invasive biomonitoring and exposure
2021
Ma, Shengtao | Zeng, Zihuan | Lin, Meiqing | Tang, Jian | Yang, Yan | Yu, Yingxin | Li, Guiying | An, Taicheng
Non-invasive human biomonitoring methods using hair and fingernails as matrices are widely used to assess the exposure of organic contaminants. In this work, a total of 72 human fingernails were collected from workers and near-by residents from a typical electronic waste (e-waste) dismantling site, and were analyzed for human exposure to polycyclic aromatic hydrocarbons (PAHs) and their mono-hydroxyl metabolites (OH-PAHs). The concentrations of PAHs and OH-PAHs were obtained as 7.97–551 and 39.5–3280 ng/g for e-waste workers (EW workers), 7.05–431 and 27.3–3320 ng/g for non-EW workers, 7.93–289 and 124–779 ng/g for adult residents, and 8.88–1280 and 181–293 ng/g for child residents, respectively. The composition profiles of PAHs in the human fingernails of the four groups were similar, with isomers of Phe, Pyr and Fluo being the predominated congeners, while 2-OH-Nap accounted for more than 70% of the total OH-PAHs. These contaminants were found most in the fingernails of EW workers, followed by non-EW workers, adult residents, and child residents, indicating e-waste dismantling activities are the major sources of PAH exposure. However, significantly higher levels of PAHs with 4–6 rings were observed only in workers as opposed to the residents, and a significant correlation between 3-OH-Flu (p < 0.05) and 2-OH-Phe (p < 0.01) in the fingernails and urine was observed, but no significant correlation was found between the concentration of OH-PAHs in matched hair and fingernail samples. In addition, the levels of PAHs in fingernails increased with the age of EW workers. This is the first study to explore the accumulation and distribution of PAHs and OH-PAHs in human fingernails, which would provide valuable insight into non-invasive biomonitoring and health risk assessment of PAHs.
Afficher plus [+] Moins [-]Uptake and metabolism of nonylphenol in plants: Isomer selectivity involved with direct conjugation
2021
Sun, Jianqiang | Yang, Xindong | Shen, Hong | Xu, Ying | Zhang, Anping | Gan, Jay
Nonylphenol (NP), an environmental estrogen, is actually a complicated mixture of isomers, although it is commonly considered to be a single compound. There are many routes for crops to come into contact with NP; however, little is known about the plant uptake and metabolism of NP, especially at the isomer level. This study comparatively evaluated the uptake and in-planta metabolism of 4-n-NP and its 10 isomers using both carrot cells and intact plants. The rapid metabolism of 4-n-NP was observed in the callus tissues and intact plants with half-lives of 2 h and 4.72 d, respectively. Six conjugates of 4-n-NP were identified in the cell extracts using high resolution mass spectrometry. The primary transformation pathway was found to be the direct conjugation (Phase II metabolism) with the parent compound at the hydroxyl. Furthermore, 4-NP isomers with short side chains and/or bulky α-substituents were more resistant to plant metabolism and showed a greater tendency for accumulation. The influence of the side chains to the isomer selectivity was verified by the molecular docking between glycosyltransferase and 4-NP isomers. This study highlighted the necessity to consider isomer-specificity in the plant accumulation of NP and the environmental and human health implications of NP conjugates.
Afficher plus [+] Moins [-]Molecular mechanisms of developmental toxicities of azoxystrobin and pyraclostrobin toward zebrafish (Danio rerio) embryos: Visualization of abnormal development using two transgenic lines
2021
Kim, Chaeeun | Choe, Hyeseung | Park, Jungeun | Kim, Gayoung | Kim, Kyeongnam | Jeon, Hwang-Ju | Moon, Joon-Kwan | Kim, Myoung-Jin | Lee, Sung-Eun
Azoxystrobin (AZ) and pyraclostrobin (PY) are strobilurin fungicides that inhibit fungal mitochondrial respiration. In this study, a representative model, zebrafish (Danio rerio), was used as a test species for acute and developmental toxicity. Survival and malformation rates were observed only PY-treated embryos, with an LC₅₀ value of 77.75 ppb accompanied by a dramatic decrease in hatching rate, while AZ did not show great mortality. Morphological changes were observed in PY-treated embryos with the occurrence of pericadial edema at 25 ppb. A delay in growth was observed after treatment with pyraclostrobin at 50 ppb. Use of genetically engineered Tg(cmlc:EGFP) allowed fluorescence observation during heart development. PY interfered with normal heart development via upregulation of the nppa gene responsible for the expression of natriuretic peptides. Heart function was dramatically reduced as indicated by reduced heart rates. Increased expression of the nppa gene was also seen in AZ-treated embryos. The expression level of cyp24a1 was also up-regulated, while ugt1a1 and sult1st6 were down-regulated after treatment of zebrafish embryos with AZ or PY. Overall, strobilurin fungicides might inhibit normal heart formation and function within the range of concentrations tested.
Afficher plus [+] Moins [-]Effluent decontamination by the ibuprofen-mineralizing strain, Sphingopyxis granuli RW412: Metabolic processes
2021
The high global consumption of ibuprofen and its limited elimination by wastewater treatment plants (WWTPs), has led to the contamination of aquatic systems by this common analgesic and its metabolites. The potentially negative environmental and public health effects of this emerging contaminant have raised concerns, driving the demand for treatment technologies. The implementation of bacteria which mineralize organic contaminants in biopurification systems used to decontaminate water or directly in processes in WWTPs, is a cheap and sustainable means for complete elimination before release into the environment. In this work, an ibuprofen-mineralizing bacterial strain isolated from sediments of the River Elbe was characterized and assayed to remediate different ibuprofen-polluted media. Strain RW412, which was identified as Sphingopyxis granuli, has a 4.48 Mb genome which includes plasmid sequences which harbor the ipf genes that encode the first steps of ibuprofen mineralization. Here, we confirm that these genes encode enzymes which initiate CoA ligation to ibuprofen, followed by aromatic ring activation by a dioxygenase and retroaldol cleavage to unequivocally produce 4-isobutylcatechol and propionyl-CoA which then undergo further degradation. In liquid mineral salts medium, the strain eliminated more than 2 mM ibuprofen within 74 h with a generation time of 16 h. Upon inoculation into biopurification systems, it eliminated repeated doses of ibuprofen within a few days. Furthermore, in these systems the presence of RW412 avoided the accumulation of ibuprofen metabolites. In ibuprofen-spiked effluent from a municipal WWTP, ibuprofen removal by this strain was 7 times faster than by the indigenous microbiota. These results suggest that this strain can persist and remain active under environmentally relevant conditions, and may be a useful innovation to eliminate this emerging contaminant from urban wastewater treatment systems.
Afficher plus [+] Moins [-]