Affiner votre recherche
Résultats 751-760 de 6,558
Food sources are more important than biomagnification on mercury bioaccumulation in marine fishes Texte intégral
2020
Yoshino, Kenji | Mori, Keisuke | Kanaya, Gen | Kojima, Shigeaki | Henmi, Yasuhisa | Matsuyama, Akito | Yamamoto, Megumi
Marine animals often accumulate various harmful substances through the foods they ingest. The bioaccumulation levels of these harmful substances are affected by the degrees of pollution in the food and of biomagnification; however, which of these sources is more important is not well-investigated for mercury (Hg) bioaccumulation. Here we addressed this issue in fishes that inhabit the waters around Minamata Bay, located off the west coast of Kyushu Island in Kumamoto Prefecture, Japan. The total Hg concentration (hereafter [THg]) and carbon and nitrogen stable isotope ratios (δ¹³C and δ¹⁵N) were analyzed in the muscle tissue of 10 fish species, of which more than five individuals were caught by gillnet. Except one species, each was separated into two trophic groups with respective lower and higher δ¹³C values ranging from −17‰ to −16‰ and −15‰ to −14‰, which suggested that the fishes depended more on either phytoplankton- and microphytobenthos-derived foods (i.e., pelagic and benthic trophic pathways), respectively. Linear mixed effects models showed that the Hg levels were significantly associated with both δ¹⁵N and the differences in the trophic groups. [THg] increased with δ¹⁵N (i.e., indicative of higher trophic levels), but the slopes did not differ between the two trophic groups. [THg] was significantly higher in the group with higher δ¹³C values than in those with lower δ¹³C values. The effect size from marginal R squared (R²) values showed that the variation in [THg] was strongly ascribed to the trophic group difference rather than δ¹⁵N. These results suggest that the substantial Hg bioaccumulation in the fishes of Minamata Bay is mainly an effect of ingesting the microphytobenthos-derived foods that contain Hg, and that the subsequent biomagnification is secondary.
Afficher plus [+] Moins [-]Biochemical profile and gene expression of Clarias gariepinus as a signature of heavy metal stress Texte intégral
2020
Swaleh, Sadiya Binte | Banday, Umarah Zahoor | Asadi, Moneeb-Al | Usmani, Nazura
Heavy metals have been found in increasing concentrations in the aquatic environment. Fishes exposed to such metals have altered gene expression, serum profiles, tissue histology and bioindices that serve as overall health biomarkers. The heavy metals (Ni, Cd, and Cr) accumulated in water and fish tissues, were beyond the permissible limits defined by the Central Pollution Control Board/World Health Organization. Metallothionein (MT) and glutathione peroxidase (GPX) genes expression patterns highlighted the metal-specific exposure of fish. An increased fold change of genes against beta-actin serves as a potential feature for toxicity. Metal toxicity is also reflected by an increased level of digestive enzymes (amylase and lipase) in the serum and alterations in values of reproductive hormones (11-Ketotestosterone and progesterone). Total serum bilirubin attribute to the liver and biliary tract disease in fishes. Histopathological studies show cellular degeneration, breakage, vacuolization signifying the chronic stress.
Afficher plus [+] Moins [-]Reduction of mitochondrial DNA copy number in peripheral blood is related to polycyclic aromatic hydrocarbons exposure in coke oven workers: Bayesian kernel machine regression Texte intégral
2020
Zhao, Xinyu | Yang, Aimin | Fu, Ye | Zhang, Bin | Li, Xuejing | Pan, Baolong | Li, Qiang | Dong, Juan | Nie, Jisheng | Yang, Jin
Although association between polycyclic aromatic hydrocarbons (PAHs) exposure and mitochondrial DNA copy number (mtDNAcn) was researched by traditional linear model extensively, most of these studies analyzed independent effect of each PAHs metabolite and adjust for the confounding other metabolites concomitantly, without considering others interactions. As a complex organic pollutant, a reasonable statistical method is needed to study toxic effects of PAHs.Therefore, we aimed to conduct a novel statistical approach, Bayesian Kernel Machine Regression (BKMR), to explore the effect of PAHs exposure on mtDNAcn among coke oven workers. In this cross-sectional study, the concentrations urinary of PAHs metabolites were measured using high performance liquid chromatography mass spectrometry (HPLC-MS). The mtDNAcn was measured using real-time quantitative polymerase chain reaction (RT-PCR) in peripheral blood of 696 Chinese coke oven workers. The relationship of urinary of PAHs metabolites and mtDNAcn were evaluated by BKMR model. And the results showed a significant negative effect of PAHs metabolites on mtDNAcn when PAHs metabolites concentrations were all above 35th percentile compared to the median and the statistically significant negative single-exposure effect of 2-OHNAP and 2-OHPHE on mtDNAcn when all of the other PAHs are fixed at a particular threshold (25th, 50th, 75th percentile). The changes in log 2-OHNAP and 2-OHPHE from the 25th to the 75th percentile when other PAHs metabolites were at the 50th percentile were associated with change in mtDNAcn of −0.082 (−0.021, −0.124) and −0.048 (−0.021, −0.090) respectively. And evidence of a linear effect of urinary 2-OHNAP and 2-OHPHE were found. Finally, our findings suggested that PAHs cumulative exposures and particularly single-exposure of 2-OHNAP and 2-OHPHE might compromise mitochondrial function by decreasing mtDNAcn in Chinese coke oven workers.
Afficher plus [+] Moins [-]Biodegradation of plastic monomer 2,6-dimethylphenol by Mycobacterium neoaurum B5-4 Texte intégral
2020
Ji, Junbin | Zhang, Yanting | Liu, Yongchuang | Zhu, Pingping | Yan, Xin
2,6-Dimethylphenol (2,6-DMP), an important chemical intermediate and the monomer of plastic polyphenylene oxide, is widely used in chemical and plastics industry. However, the pollution problem of 2,6-DMP residues is becoming increasingly serious, which is harmful to some aquatic animals. Microbial degradation provided an effective approach to eliminate DMPs in nature, which is considered as a prospective way to remediate DMPs-contaminated environments. But the 2,6-DMP-degrading bacteria is not available and the molecular mechanism of 2,6-DMP degradation is unclear as well. Here, a 2,6-DMP-degrading bacterium named B5-4 was isolated and identified as Mycobacterium neoaurum. M. neoaurum B5-4 could utilize 2,6-DMP as the sole carbon source for growth. Furthermore, M. neoaurum B5-4 could degrade 2,6-DMP with concentrations ranging from 1 to 500 mg L⁻¹. Six intermediate metabolites of 2,6-DMP were identified and a metabolic pathway of 2,6-DMP in M. neoaurum B5-4 was proposed, in which 2,6-DMP was initially converted to 2,6-dimethyl-hydroquinone and 2,6-dimethyl-3-hydroxy-hydroquinone by two consecutive hydroxylations at C-4 and γ position; 2,6-dimethyl-3-hydroxy-hydroquinone was then subjected to aromatic ring ortho-cleavage to produce 2,4-dimethyl-3-hydroxymuconic acid, which was further transformed to citraconate, and subsequently into TCA cycle. In addition, toxicity bioassay of 2,6-DMP in water using zebrafish indicates that 2,6-DMP is toxic to zebrafish and M. neoaurum B5-4 could effectively eliminate 2,6-DMP in water to protect zebrafish from 2,6-DMP-induced death. This work provides a potential strain for bioremediation of 2,6-DMP-contaminated environments and lays a foundation for elucidating the molecular mechanism and genetic determinants of 2,6-DMP degradation.
Afficher plus [+] Moins [-]A comprehensive assessment of microbiome diversity in Tenebrio molitor fed with polystyrene waste Texte intégral
2020
Urbanek, Aneta K. | Rybak, Justyna | Wrobel, Magdalena | Leluk, Karol | Mirończuk, Aleksandra M.
Recently it was demonstrated that mealworm (Tenebrio molitor) larvae consume and biodegrade polystyrene. Thus, in this study a breeding investigation with various types of polystyrene was performed to follow the changes in the gut microbiome diversity. Polystyrene used for packaging purposes (PSp) and expanded polystyrene (EPS) were perceived as more favorable and attacked more frequently by mealworms compared to raw polystyrene (PS) and material commercially available for parcels (PSp). Although our studies showed that larvae could bite and chew selected materials, they are not able to degrade and use them for consumption purposes. In a next-generation sequencing experiment, among all samples, seven classes, Gammaproteobacteria, Bacilli, Clostridia, Acidobacteria, Actinobacteria, Alphaproteobacteria and Flavobacteria, were indicated as the most abundant, whereas the predominant genera were Enterobacter, Lactococcus and Enterococcus. Additionally, we isolated three bacteria strains able to use diverse types of bioplastic as a sole carbon source. The strains with biodegradable activity against bioplastic were identified as species of the genera Klebsiella, Pseudomonas and Serratia. The presence of a bacterial strain able to degrade bioplastic may suggest a potential niche for further investigations.
Afficher plus [+] Moins [-]Neonicotinoid insecticides in the drinking water system – Fate, transportation, and their contributions to the overall dietary risks Texte intégral
2020
Lu, Chensheng | Lu, Zhengbiao | Lin, Shu | Dai, Wei | Zhang, Quan
Neonicotinoids (Neonics) have become the most widely used insecticides around the world in recent years. Due to the hydrophilic character, neonics are emerging contaminants in drinking water. In this study, we aimed to characterize and quantify the fate and transport of neonics in the drinking water treatment system and their contributions to the overall dietary risks. Seven neonics in 97 surface and drinking water samples in the city of Hangzhou, China were analyzed. The relative potency factor method was adopted in order to calculate the total neonics concentrations. We then used the Monte Carlo simulation to calculate the chronic daily intake (CDI) of total neonics from water consumption. All 16 surface water samples collected from two rivers contained at least two neonics, and more than 93% of those contained 3 or more neonics. Imidacloprid was detected in all 16 surface water samples, followed by clothianidin and acetamiprid with average concentrations of 11.9, 7.6, 17.6 ng L-1, respectively. The drinking water treatment plants removed approximately 50% of neonics from surface water. However, 68 out of 71 tap water samples that we collected from the household faucets contained at least one neonic, with the highest average concentrations of 5.8 ng L-1 for acetamiprid. The maximum of CDIs of total neonics from water consumption for adult and children were 10.2 and 12.4 ng kg-1 d-1, respectively, which are significantly lower than the acceptable daily intake (ADI). The results presented here shown drinking water consumption only represented an insignificant portion of dietary risks of total neonics, mainly due to the modern drinking water treatment technologies that are capable of removing significant amount of neonics from drinking water. However, the ubiquity of neonics in the drinking water sources to kitchen faucets, should be a concern for public health.
Afficher plus [+] Moins [-]Formation of perfluorocarboxylic acids from 6:2 fluorotelomer sulfonate (6:2 FTS) in landfill leachate: Role of microbial communities Texte intégral
2020
Hamid, Hanna | Li, Loretta Y. | Grace, John R.
Fluorotelomer compounds in landfill leachate can undergo biotransformation under aerobic conditions and act as a secondary source of perfluorocarboxylic acids (PFCAs) to the environment. Very little is known about the role of various microbial communities towards fluorotelomer compounds biotransformation. Using an inoculum prepared from the sediment of a leachate collection ditch, 6:2 fluorotelomer sulfonate (6:2 FTS) biotransformation experiments were carried out. Specific substrates (i.e., glucose, ammonia) and ammonia-oxidizing inhibitor (allylthiourea) were used to produce two experimental runs with heterotrophic (HET) growth only and heterotrophic with ammonia-oxidizing and nitrite- oxidizing bacteria (HET + AOB + NOB). After 10 days, ∼20% of the spiked 6:2 FTS removal was observed in HET + AOB + NOB, compared to ∼7% under HET condition. Higher 6:2 FTS removal in HET + AOB + NOB likely resulted from ammonia monooxygenase enzyme that catalyzes the first step of ammonia oxidation. The HET + AOB + NOB condition also showed higher PFCA (C4–C6) formation (∼2% of initially spiked 6:2 FTS), possibly due to higher overall bioactivity. Microbial community analysis through 16s rRNA sequencing confirmed that Proteobacteria and Bacteroidetes were the most abundant phyla (>75% relative abundance) under all experimental conditions. High abundance of Actinobacteria (>17%) was observed under the HET + AOB + NOB condition on day 7. Since Actinobacteria can synthesize a wide range of enzymes including monooxygenases, they likely play an important role in 6:2 FTS biotransformation and PFCA production.
Afficher plus [+] Moins [-]Uptake, translocation and toxicity of chlorinated polyfluoroalkyl ether potassium sulfonate (F53B) and chromium co-contamination in water spinach (Ipomoea aquatica Forsk) Texte intégral
2020
Tang, Tianhao | Liu, Xiaochun | Wang, Longqian | Zuh, Achuo Anitta | Qiao, Weichuan | Huang, Jun
Bioaccumulation and toxicity of per-and polyfluoroalkyl substances and metal in plants have been confirmed, however their contamination in soil and plants still requires extensive investigation. In this study the combined effects of chlorinated polyfluoroalkyl ether potassium sulfonate (F53B) and chromium (Cr) on water spinach (Ipomoea aquatica Forsk) were investigated. Compared with each single stress, the combination of F53B and Cr (VI) reduced the biomass and height and increasingly accumulated in the roots and destroyed the cell structure. Besides, the co-contamination led to the immobilization of F53B and Cr (VI) in soil, which affected their migration in soil and transfer to plants. The antioxidant response and photosynthesis of the plant weakened under the single Cr (VI) and enhanced under the single F53B treatment; however the contamination of F53B and Cr (VI) could also reduce this effect, as confirmed by the gene expression of MTa, psbA and psbcL genes. This study provides an evidence of the environmental risks resulting from the coexistence of F53B and Cr (VI).
Afficher plus [+] Moins [-]Impacts of different sources of animal manures on dissemination of human pathogenic bacteria in agricultural soils Texte intégral
2020
Li, Jinyang | Chen, Qinglin | Li, Helian | Li, Shiwei | Liu, Yinghao | Yang, Liyuan | Han, Xuemei
The human pathogenic bacteria (HPB) in animal feces may disseminate to agricultural soils with their land application as organic fertilizer. However, the knowledge about the impacts of different sources and rates of animal manures on the temporal changes of soil HPB remains limited, which hamper our ability to estimate the potential risks of their land application. Here, we constructed an HPB database including 565 bacterial strains. By blasting the 16 S rRNA gene sequences against the database we explored the occurrence and fate of HPB in soil microcosms treated with two rates of swine, poultry or cattle manures. A total of 30 HPB were detected in all of manure and soil samples. Poultry manure at the high level obviously improved the abundance of soil HPB. The application of swine manure could introduce concomitant HPB into the soils. Of which, Pseudomonas syringae pv. syringae B728a and Escherichia coli APEC O78 may deserve more attention because of their survival for a few days in manured soils and being possible hosts of diverse antibiotic resistance genes (ARGs) as revealed by co-occurrence pattern. Bayesian source tracking analysis showed that the HPB derived from swine manure had a higher contribution to soil pathogenic communities than those from poultry or cattle manures in early days of incubation. Mantel test together with variation partitioning analysis suggested that bacterial community and soil physicochemical properties were the dominant factors determining the profile of HPB and contributed 64.7% of the total variations. Overall, our results provided experimental evidence that application of animal manures could facilitate the potential dissemination of HPB in soil environment, which should arouse sufficient attention in agriculture practice and management to avoid the threat to human health.
Afficher plus [+] Moins [-]Influence of household smoking habits on inhalation bioaccessibility of trace elements and light rare earth elements in Canadian house dust Texte intégral
2020
Kastury, Farzana | Ritch, Susie | Rasmussen, Pat E. | Juhasz, Albert L.
In this study, total concentration and inhalation bioaccessibility (dissolution in simulated biological solution) of trace elements (TE) and rare earth elements (REE) were assessed in PM₁₀ from Canadian house dust samples with smoking (n = 25) and non-smoking (n = 25) status. Compared to the natural background concentrations in Canadian soils, median Zn, Pb, Cd and Cu concentrations in PM₁₀ were 10–23 fold higher, while median La, Ce and Pr concentrations were 1.6–2.4 fold higher. Mann-Whitney tests (α = 0.05) indicated no difference between the median TE concentrations based on the smoking status of the household; however, median REE concentrations were significantly higher in the PM₁₀ of smoking households. Additionally, Cd and Ni were positively correlated (Spearman r, p < 0.05) to La, Ce and Nd in smoking households, suggesting that tobacco combustion may have contributed REE in the PM₁₀ of these households. Median inhalation-ingestion bioaccessibility assay outcomes of arsenic (As) and lead (Pb) was higher in the non-smoking households when compared to smoking households (Mann Whitney test, α = 0.05), suggesting that tobacco combustion products may be associated with less soluble species of As and Pb. Although REE bioaccessibility was negligible in simulated lung epithelial fluid regardless of the smoking status of the household, bioaccessibility in the lung-gastric phase was 23.6–27.6% in the smoking household and 34.7–36.7% in the non-smoking households, indicating a significantly lower REE dissolution in PM₁₀ of smoking households. In contrast, between 17 and 21.9% bioaccessibility of REE was observed when artificial lysosomal fluid was used, where the outcome was not significantly affected by the smoking status. This study indicates that despite a higher median REE concentration in the PM₁₀ of smoking households, inhalation bioaccessibility may be significantly influenced by the mineralogy.
Afficher plus [+] Moins [-]