Affiner votre recherche
Résultats 761-770 de 4,308
Cerium oxide nanoparticles alter the salt stress tolerance of Brassica napus L. by modifying the formation of root apoplastic barriers Texte intégral
2017
Rossi, Lorenzo | Zhang, Weilan | Ma, Xingmao
Rapidly growing global population adds significant strains on the fresh water resources. Consequently, saline water is increasingly tapped for crop irrigation. Meanwhile, rapid advancement of nanotechnology is introducing more and more engineered nanoparticles into the environment and in agricultural soils. While some negative effects of ENPs on plant health at very high concentrations have been reported, more beneficial effects of ENPs at relatively low concentrations are increasingly noticed, opening doors for potential applications of nanotechnology in agriculture. In particular, we found that cerium oxide nanoparticles (CeO2NPs) improved plant photosynthesis in salt stressed plants. Due to the close connections between salt stress tolerance and the root anatomical structures, we postulated that CeO2NPs could modify plant root anatomy and improve plant salt stress tolerance. This study aimed at testing the hypothesis with Brassica napus in the presence of CeO2NPs (0, 500 mg kg−1 dry sand) and/or NaCl (0, 50 mM) in a growth chamber. Free hand sections of fresh roots were taken every seven days for three weeks and the suberin lamellae development was examined under a fluorescence microscope. The results confirmed the hypothesis that CeO2NPs modified the formation of the apoplastic barriers in Brassica roots. In salt stressed plants, CeO2NPs shortened the root apoplastic barriers which allowed more Na+ transport to shoots and less accumulation of Na+ in plant roots. The altered Na+ fluxes and transport led to better physiological performance of Brassica and may lead to new applications of nanotechnology in agriculture.
Afficher plus [+] Moins [-]Elimination and ecotoxicity evaluation of phthalic acid esters from textile-dyeing wastewater Texte intégral
2017
Liang, Jieying | Ning, Xun-an | Kong, Minyi | Liu, Daohua | Wang, Guangwen | Cai, Haili | Sun, Jian | Zhang, Yaping | Lu, Xingwen | Yuan, Yong
Phthalic acid esters (PAEs), presented in fabrics, surfactants and detergents, were discharged into the ecosystem during textile-dyeing wastewater treatment and might have adverse effects on water ecosystems. In this study, comprehensive investigations of the content and component distributions of 12 PAEs across different units of four textile-dyeing wastewater plants were carried out in Guangdong Province, China. Ecotoxicity assessments were also conducted based on risk quotients (RQs). On average, 93.54% TOC and 80.14% CODCr were removed following treatment at the four plants. The average concentration of Σ12PAEs in effluent was 11.78 μg/L. PAEs with highest concentrations were dimethylphthalate (6.58 μg/L), bis(2-ethylhexyl)phthalate (2.23 μg/L), and dibutylphthalate (1.98 μg/L). The concentrations of the main toxic PAEs were 2.23 μg/L (bis(2-ethylhexyl)phthalate), 0.19 μg/L (diisononylphthalate) and 0.67 μg/L (dinoctylphthalate); corresponding RQs were 1.4, 0.55, and 0.54 for green algae, respectively. The RQs of Σ12PAEs in effluent of the four plants were >0.1, indicating that Σ12PAEs posed medium or higher ecological risk to fish, Daphnia and green algae. Physicochemical-biochemical system was found to be more effective than biochemical-physicochemical system for TOC and CODCr removal, because pre-physicochemical treatment helped to remove macromolecular organic substances, and reduced the competition with other pollutants during biochemical treatment. However, biochemical-physicochemical system was more effective than physicochemical-biochemical system for elimination of PAEs and for detoxification, since the biochemical treatment might produce the toxic PAEs that could helpfully be settled by post-physicochemical treatment. Moreover, ecotoxicity evaluation was recommended for current textile-dyeing wastewater treatment plants.
Afficher plus [+] Moins [-]Investigating the contribution of shipping emissions to atmospheric PM2.5 using a combined source apportionment approach Texte intégral
2017
Lang, Jianlei | Zhou, Ying | Chen, Dongsheng | Xing, Xiaofan | Wei, Lin | Wang, Xiaotong | Zhao, Na | Zhang, Yanyun | Guo, Xiurui | Han, Lihui | Cheng, Shuiyuan
Many studies have been conducted focusing on the contribution of land emission sources to PM2.5 in China; however, little attention had been paid to other contributions, especially the secondary contributions from shipping emissions to atmospheric PM2.5. In this study, a combined source apportionment approach, including principle component analysis (PCA) and WRF-CMAQ simulation, was applied to identify both primary and secondary contributions from ships to atmospheric PM2.5. An intensive PM2.5 observation was conducted from April 2014 to January 2015 in Qinhuangdao, which was close to the largest energy output port of China. The chemical components analysis results showed that the primary component was the major contributor to PM2.5, with proportions of 48.3%, 48.9%, 55.1% and 55.4% in spring, summer, autumn and winter, respectively. The secondary component contributed higher fractions in summer (48.2%) and winter (36.8%), but had lower percentages in spring (30.1%) and autumn (32.7%). The hybrid source apportionment results indicated that the secondary contribution (SC) of shipping emissions to PM2.5 could not be ignored. The annual average SC was 2.7%, which was comparable to the primary contribution (2.9%). The SC was higher in summer (5.3%), but lower in winter (1.1%). The primary contributions to atmospheric PM2.5 were 3.0%, 2.5%, 3.4% and 2.7% in spring, summer, autumn and winter, respectively. As for the detailed chemical components, the contributions of shipping emissions were 2.3%, 0.5%, 0.1%, 1.0%, 1.7% and 0.1% to elements & sea salt, primary organic aerosol (POA), element carbon (EC), nitrate, sulfate and secondary organic carbon (SOA), respectively. The results of this study will further the understanding of the implications of shipping emissions in PM2.5 pollution.
Afficher plus [+] Moins [-]Determination of the vertical profile of particle number concentration adjacent to a motorway using an unmanned aerial vehicle Texte intégral
2017
Villa, T.F. | Jayaratne, E.R. | Gonzalez, L.F. | Morawska, L.
A quantitative assessment of the vertical profile of traffic pollution, specifically particle number concentration (PNC), in an open space adjacent to a motorway was possible for the first time, to the knowledge of the authors, using an Unmanned Aerial Vehicle (UAV) system. Until now, traffic pollution has only been measured at ground level while the vertical distribution, is limited to studies conducted from buildings or fixed towers and balloons. This new UAV system demonstrated that the PNC sampled during the period form 10 a.m. to 4 p.m., outside the rush hours with a constant traffic flow, increased from a concentration of 2 × 104 p/cm3 near the ground up to 10 m, and then sharply decreased attaining a steady value of 4 × 103 p/cm3 beyond a height of about 40 m. While more comprehensive investigations would be warranted under different conditions, such as topography and vehicle and fuel type, this finding is of great significance, given that it demonstrates the impact of traffic emissions on human exposure, but less so to pollution within the upper part of the boundary layer.
Afficher plus [+] Moins [-]Chronic ZnO-NPs exposure at environmentally relevant concentrations results in metabolic and locomotive toxicities in Caenorhabditis elegans Texte intégral
2017
Huang, Jiwei | Li, Shang-Wei | Hsiu-Chuan Liao, Vivian
ZnO nanoparticles (ZnO-NPs) are emerging contaminants that raise the concerns of potential risk in the aquatic environment. It has been estimated that the environmental ZnO-NPs concentration is 76 μg/l in the aquatic environment. Our aim was to determine the aquatic toxicity of ZnO-NPs with chronic exposure at environmentally relevant concentrations using the nematode Caenorhabditis elegans. Two simulated environmentally relevant mediums—moderately hard reconstituted water (EPA water) and simulated soil pore water (SSPW)—were used to represent surface water and pore water in sediment, respectively. The results showed that the ZnO-NPs in EPA water has a much smaller hydrodynamic diameter than that in SSPW. Although the ionic release of Zn ions increased time-dependently in both mediums, the Zn ions concentrations in EPA water increased two-fold more than that in SSPW at 48 h and 72 h. The ZnO-NPs did not induce growth defects or decrease head thrashes in C. elegans in either media. However, chronic exposure to ZnO-NPs caused a significant reduction in C. elegans body bends in EPA water even with a relatively low concentration (0.05 μg/l); similar results were not observed in SSPW. Moreover, at the same concentrations (50 and 500 μg/l), body bends in C. elegans were reduced more severely in ZnO-NPs than in ZnCl2 in EPA water. The ATP levels were consistently and significantly decreased, and ROS was induced after ZnO-NPs exposure (50 and 500 μg/l) in EPA water. Our results provide evidences that chronic exposure to ZnO-NPs under environmentally relevant concentrations causes metabolic and locomotive toxicities implicating the potential ecotoxicity of ZnO-NPs at low concentrations in aquatic environments.
Afficher plus [+] Moins [-]Size-related bacterial diversity and tetracycline resistance gene abundance in the air of concentrated poultry feeding operations Texte intégral
2017
Gao, Min | Jia, Ruizhi | Qiu, Tianlei | Han, Meilin | Wang, Xuming
Concentrated animal-feeding operations (CAFOs) are considered a source of airborne human pathogens and antibiotic resistance genes. Although bacterial abundance and diversity have been well studied, limited information on the size distribution of bioaerosols has prevented a clear understanding of the health effects of exposure to bioaerosols from CAFOs. Here, different sizes of particles were sampled from the inside and outside of atmospheric environments of layer and broiler feeding operations using 8-stage Andersen samplers. The quantitative real-time polymerase chain reaction (qPCR) and 16S rDNA-based sequencing were used to analyze the characteristics of biological abundance and diversity, respectively, according to size. The results indicated that size-related differences occurred in terms of airborne bacterial richness, diversity, and concentration at poultry-feeding operations. The richness of biological genera in the urban atmospheric environment was lower than in concentrated poultry-feeding operations. The biological diversity of airborne bacterial genera, including genera associated with potential pathogens, varied according to size. The bacterial lineages of bioaerosols present in the 7 size stages for layers clustered apart from those for broilers, suggesting that the type of poultry house is a more important factor than the particle size in shaping the microbial communities. In most cases, the concentrations of the 16S rDNA, Escherichia coli, tetW, and tetL genes increased as the particle size increased, with the geometric mean diameters varying from 4.7 to 5.8 μm. These results regarding the size-related differences in the diversity and abundance of bioaerosols will facilitate a better understanding of the potential health impact on both poultry and humans working in such environments.
Afficher plus [+] Moins [-]Effects of mineral amendments on trace elements leaching from pre-treated marine sediment after simulated rainfall events Texte intégral
2017
Hurel, C. | Taneez, M. | Volpi Ghirardini, A. | Libralato, G.
Bauxite extraction by-products (red mud) were used to evaluate their potential ability to stabilize trace elements from dredged and aerated/humidified marine sediment. The investigated by-products were: bauxaline®(BX) that is a press-filtered red mud; bauxsol™(BS) that is a press-filtered red mud previously washed with excess of seawater, and gypsum neutralized bauxaline® (GBX). These materials were separately mixed to dredged composted sediment sample considering 5% and 20% sediment: stabilizer ratios. For pilot experiments, rainfall events were regularly simulated for 3 months. Concentrations of As, Mo, Cd, Cr, Zn, Cu, and Ni were analyzed in collected leachates as well as toxicity. Results showed that Cd, Mo, Zn, and Cu were efficiently stabilized in the solid matrix when 20% of BX, BS, and GBX was applied. Consequently, toxicity of leachates was lower than for the untreated sediment, meaning that contaminants mobility was reduced. A 5% GBX was also efficient for Mo, Zn and Cu stabilization. In all scenarios, As stabilization was not improved. Compared to all other monitored elements, Mo mobility seemed to depend upon temperature-humidity conditions during pilot experiments suggesting the need of further investigations.
Afficher plus [+] Moins [-]Physico-chemical and biological characterization of urban municipal landfill leachate Texte intégral
2017
Naveen, B.P. | Mahapatra, Durga Madhab | Sitharam, T.G. | Sivapullaiah, P.V. | Ramachandra, T.V.
Unscientific management and ad-hoc approaches in municipal solid waste management have led to a generation of voluminous leachate in urban conglomerates. Quantification, quality assessment, following treatment and management of leachate has become a serious problem worldwide. In this context, the present study investigates the physico-chemical and biological characterization of landfill leachate and nearby water sources and attempts to identify relationships between the key parameters together with understanding the various processes for chemical transformations. The analysis shows an intermediate leachate age (5–10 years) with higher nutrient levels of 10,000–12,000 mg/l and ∼2000–3000 mg/l of carbon (COD) and nitrogen (TKN) respectively. Elemental analysis and underlying mechanisms reveal chemical precipitation and co-precipitation as the vital processes in leachate pond systems resulting in accumulation of trace metals. Based on the above criteria the samples were clustered into major groups that showed a clear distinction between leachate and water bodies. The microbial analysis showed bacterial communities correlating with specific factors relevant to redox environments indicating a gradient in nature and abundance of biotic diversity with a change in leachate environment. Finally, the quality and the contamination potential of the samples were evaluated with the help of leachate pollution index (LPI) and water quality index (WQI) analysis. The study helps in understanding the contamination potential of landfill leachate and establishes linkages between microbial communities and physico-chemical parameters for effective management of landfill leachate.
Afficher plus [+] Moins [-]Uptake and subcellular distribution of triclosan in typical hydrophytes under hydroponic conditions Texte intégral
2017
He, Yupeng | Nie, Enguang | Li, Chengming | Ye, Qingfu | Wang, Haiyan
The increasing discharge of pharmaceuticals and personal care products (PPCPs) into the environment has generated serious public concern. The recent awareness of the environmental impact of this emerging class of pollutants and their potential adverse effects on human health have been documented in many reports. However, information regarding uptake and intracellular distribution of PPCPs in hydrophytes under hydroponic conditions, and potential human exposure is very limited. A laboratory experiment was conducted using ¹⁴C-labeled triclosan (TCS) to investigate uptake and distribution of TCS in six aquatic plants (water spinach, purple perilla, cress, penny grass, cane shoot, and rice), and the subcellular distribution of ¹⁴C-TCS was determined in these plants. The results showed that the uptake and removal rate of TCS from nutrient solution by hydrophytes followed the order of cress (96%) > water spinach (94%) > penny grass (87%) > cane shoot (84%) > purple perilla (78%) > rice (63%) at the end of incubation period (192 h). The range of ¹⁴C-TCS content in the roots was 94.3%–99.0% of the added ¹⁴C-TCS, and the concentrations in roots were 2–3 orders of magnitude greater than those in shoots. Furthermore, the subcellular fraction-concentration factor (3.6 × 10²–2.6 × 10³ mL g⁻¹), concentration (0.58–4.47 μg g⁻¹), and percentage (30%–61%) of ¹⁴C-TCS in organelles were found predominantly greater than those in cell walls and/or cytoplasm. These results indicate that for these plants, the roots are the primary storage for TCS, and within plant cells organelles are the major domains for TCS accumulation. These findings provide a better understanding of translocation and accumulation of TCS in aquatic plants at the cellular level, which is valuable for environmental and human health assessments of TCS.
Afficher plus [+] Moins [-]Ecotoxicological assessment of cobalt using Hydra model: ROS, oxidative stress, DNA damage, cell cycle arrest, and apoptosis as mechanisms of toxicity Texte intégral
2017
Zeeshan, Mohammed | Murugadas, Anbazhagan | Ghaskadbi, Surendra | Ramaswamy, Babu Rajendran | Akbarsha, Mohammad Abdulkader
The mechanisms underlying cobalt toxicity in aquatic species in general and cnidarians in particular remain poorly understood. Herein we investigated cobalt toxicity in a Hydra model from morphological, histological, developmental, and molecular biological perspectives. Hydra, exposed to cobalt (0–60 mg/L), were altered in morphology, histology, and regeneration. Exposure to standardized sublethal doses of cobalt impaired feeding by affecting nematocytes, which in turn affected reproduction. At the cellular level, excessive ROS generation, as the principal mechanism of action, primarily occurred in the lysosomes, which was accompanied by the upregulation of expression of the antioxidant genes SOD, GST, GPx, and G6PD. The number of Hsp70 and FoxO transcripts also increased. Interestingly, the upregulations were higher in the 24-h than in the 48-h time-point group, indicating that ROS overwhelmed the cellular defense mechanisms at the latter time-point. Comet assay revealed DNA damage. Cell cycle analysis indicated the induction of apoptosis accompanied or not by cell cycle arrest. Immunoblot analyses revealed that cobalt treatment triggered mitochondria-mediated apoptosis as inferred from the modulation of the key proteins Bax, Bcl-2, and caspase-3. From this data, we suggest the use of Hydra as a model organism for the risk assessment of heavy metal pollution in aquatic ecosystems.
Afficher plus [+] Moins [-]