Affiner votre recherche
Résultats 781-790 de 4,309
Effects of wastewater irrigation and sewage sludge application on soil residues of chiral fungicide benalaxyl Texte intégral
2017
Jing, Xu | Yao, Guojun | Liu, Donghui | Liang, Yiran | Luo, Mai | Zhou, Zhiqiang | Wang, Peng
The effects of wastewater irrigation and sewage sludge on the dissipation behavior of the fungicide benalaxyl and its primary metabolite benalaxyl acid in soil were studied on an enantiomeric level during a 148-day exposure experiment. Chiral separation and analysis of the two pairs of enantiomers were achieved using HPLC-MS/MS with a chiralpak IC chiral column. Benalaxyl decreased with half-life of 16.1 days in soil under tap water irrigation with preferential residue of S-benalaxyl. Benalaxyl acid was formed with great preference of R-enantiomer before 21 days while enriched in S-enantiomer afterwards. The degradation of benalaxyl was restrained by both wastewater and treated wastewater irrigation, but the enantioselectivity in S-benalaxyl residue was enhanced. Benalaxyl acid was also formed with similar enantioselectivity as in tap water irrigation. Sewage sludge could accelerate benalaxyl degradation with shorter half-life. Surprisingly, the enantioselectivity with preference degradation of S-enantiomer in sewage sludge was opposite to that in soil. More benalaxyl acid was generated with EF values always lower than 0.5 and remained longer in sewage sludge than in soil. A sterilization experiment indicated that the conversion of benalaxyl to benalaxyl acid and the enantioselectivity were determined by the microorganisms in soil or sewage sludge. Farming practices like wastewater irrigation and sewage sludge application might not only influence the fate of pesticide, but also the enantioselectivity of chiral pesticide enantiomers and thus the risks of pesticide residues posed to the environment.
Afficher plus [+] Moins [-]Enantiomeric profiling of a chemically diverse mixture of chiral pharmaceuticals in urban water Texte intégral
2017
Evans, S. | Bagnall, J. | Kasprzyk-Hordern, B.
Due to concerns regarding the release of pharmaceuticals into the environment and the understudied impact of stereochemistry of pharmaceuticals on their fate and biological potency, we focussed in this paper on stereoselective transformation pathways of selected chiral pharmaceuticals (16 pairs) at both microcosm (receiving waters and activated sludge wastewater treatment simulating microcosms) and macrocosm (wastewater treatment plant (WWTP) utilising activated sludge technology and receiving waters) scales in order to test the hypothesis that biodegradation of chiral drugs is stereoselective. Our monitoring programme of a full scale activated sludge WWTP and receiving environment revealed that several chiral drugs, those being marketed mostly as racemates, are present in wastewater and receiving waters enriched with one enantiomeric form (e.g. fluoxetine, mirtazapine, salbutamol, MDMA). This is most likely due to biological metabolic processes occurring in humans and other organisms. Both activated sludge and receiving waters simulating microcosms confirmed our hypothesis that chiral drugs are subject to stereoselective microbial degradation. It led, in this research, to preferential degradation of S-(+)-enantiomers of amphetamines, R-(+)-enantiomers of beta-blockers and S-(+)-enantiomers of antidepressants. In the case of three parent compound – metabolite pairs (venlafaxine – desmethylvenlafaxine, citalopram – desmethylcitalopram and MDMA - MDA), while parent compounds showed higher resistance to both microbial metabolism and photodegradation, their desmethyl metabolites showed much higher degradation rate both in terms of stereoselective metabolic and non-stereoselective photochemical processes. It is also worth noting that metabolites tend to be, as expected, enriched with enantiomers of opposite configuration to their parent compounds, which might have significant toxicological consequences when evaluating the metabolic residues of chiral pollutants.
Afficher plus [+] Moins [-]Gridded emission inventory of short-chain chlorinated paraffins and its validation in China Texte intégral
2017
Jiang, Wanyanhan | Huang, Tao | Mao, Xiaoxuan | Wang, Li | Zhao, Yuan | Jia, Chenhui | Wang, Yanan | Gao, Hong | Ma, Jianmin
China produces approximately 20%–30% of the total global chlorinated paraffins (CPs). The establishment of a short-chain CP (SCCP) emission inventory is a significant step toward risk assessment and regulation of SCCPs in China and throughout the globe. This study developed a gridded SCCPs emission inventory with a 1/4° longitude by 1/4° latitude resolution from 2008 to 2012 for China, which was based on the total annual CPs emissions for the nation. The total national SCCPs emission during this 5-year period was 5651.5 tons. An additive in metal cutting fluids was a major emission source in China, contributing 2680.2 tons to the total atmospheric emissions of SCCPs from 2008 to 2012, followed by the production of CPs (2281.8 tons), plasticizers (514.3 tons), flame retardants (108.6 tons), and net import (66.6 tons). Most of these emission sources are located along the eastern seaboard of China and southern China. A coupled atmospheric transport model was employed to simulate environmental contamination by SCCPs using the gridded emission inventory of SCCPs from 2008 to 2012 as the model initial conditions. Simulated atmospheric and soil concentrations were compared with field monitoring data to validate the emission inventory. The results showed good consistency between modeled and field sampling data, supporting the reliability and credibility of the gridded SCCPs emission inventory that was developed in the present study.
Afficher plus [+] Moins [-]Using two-dimensional correlation size exclusion chromatography (2D-CoSEC) to explore the size-dependent heterogeneity of humic substances for copper binding Texte intégral
2017
Lee, Yun-Kyung | Hur, Jin
Knowledge of the heterogeneous distribution of humic substances (HS) reactivities along a continuum of molecular weight (MW) is crucial for the systems where the HS MW is subject to change. In this study, two dimensional correlation spectroscopy combined with size exclusion chromatography (2D-CoSEC) was first utilized to obtain a continuous and heterogeneous presence of copper binding characteristics within bulk HS with respect to MW. HS solutions with varying copper concentrations were directly injected into a size exclusion chromatography (SEC) system with Tris-HCl buffer as a mobile phase. Several validation tests confirmed neither structural disruption of HS nor competition effect of the mobile phase used. Similar to batch systems, fluorescence quenching was observed in the chromatograms over a wide range of HS MW. 2D-CoSEC maps of a soil-derived HS (Elliot soil humic acid) showed the greater fluorescence quenching degrees with respect to the apparent MW on the order of 12500 Da > 10600 Da > 7000 Da > 15800 Da. The binding constants calculated based on modified Stern-Volmer equation were consistent with the 2D-CoSEC results. More heterogeneity of copper binding affinities within bulk HS was found for the soil-derived HS versus an aquatic HS. The traditional fluorescence quenching titration method using ultrafiltered HS size fractions failed to delineate detailed distribution of the copper binding characteristics, exhibiting a much shorter range of the binding constants than those obtained from the 2D-CoSEC. Our proposed technique demonstrated a great potential to describe metal binding characteristics of HS at high MW resolution, providing a clear picture of the size-dependent metal-HS interactions.
Afficher plus [+] Moins [-]Arsenic biotransformation by a cyanobacterium Nostoc sp. PCC 7120 Texte intégral
2017
Xue, Xi-Mei | Yan, Yu | Xiong, Chan | Raber, Georg | Francesconi, Kevin | Pan, Ting | Ye, Jun | Zhu, Yong-Guan
Nostoc sp. PCC 7120 (Nostoc), a typical filamentous cyanobacterium ubiquitous in aquatic system, is recognized as a model organism to study prokaryotic cell differentiation and nitrogen fixation. In this study, Nostoc cells incubated with arsenite (As(III)) for two weeks were extracted with dichloromethane/methanol (DCM/MeOH) and the extract was partitioned between water and DCM. Arsenic species in aqueous and DCM layers were determined using high performance liquid chromatography - inductively coupled plasma mass spectrometer/electrospray tandem mass spectrometry (HPLC-ICPMS/ESIMSMS). In addition to inorganic arsenic (iAs), the aqueous layer also contained monomethylarsonate (MAs(V)), dimethylarsinate (DMAs(V)), and the two arsenosugars, namely a glycerol arsenosugar (Oxo-Gly) and a phosphate arsenosugar (Oxo-PO4). Two major arsenosugar phospholipids (AsSugPL982 and AsSugPL984) were detected in DCM fraction. Arsenic in the growth medium was also investigated by HPLC/ICPMS and shown to be present mainly as the inorganic forms As(III) and As(V) accounting for 29%–38% and 29%–57% of the total arsenic respectively. The total arsenic of methylated arsenic, arsenosugars, and arsenosugar phospholipids in Nostoc cells with increasing As(III) exposure were not markedly different, indicating that the transformation to organoarsenic in Nostoc was not dependent on As(III) concentration in the medium. Our results provide new insights into the role of cyanobacteria in the biogeochemical cycling of arsenic.
Afficher plus [+] Moins [-]Source characterization of urban particles from meat smoking activities in Chongqing, China using single particle aerosol mass spectrometry Texte intégral
2017
Chen, Yang | Wenger, John C. | Yang, Fumo | Cao, Junji | Huang, Rujin | Shi, Guangming | Zhang, Shumin | Tian, Mi | Wang, Huanbo
A Single Particle Aerosol Mass Spectrometer (SPAMS) was deployed in the urban area of Chongqing to characterize the particles present during a severe particulate pollution event that occurred in winter 2014–2015. The measurements were made at a time when residents engaged in traditional outdoor meat smoking activities to preserve meat before the Chinese Spring Festival. The measurement period was predominantly characterized by stagnant weather conditions, highly elevated levels of PM2.5, and low visibility. Eleven major single particle types were identified, with over 92.5% of the particles attributed to biomass burning emissions. Most of the particle types showed appreciable signs of aging in the stagnant air conditions. To simulate the meat smoking activities, a series of controlled smoldering experiments was conducted using freshly cut pine and cypress branches, both with and without wood logs. SPAMS data obtained from these experiments revealed a number of biomass burning particle types, including an elemental and organic carbon (ECOC) type that proved to be the most suitable marker for meat smoking activities. The traditional activity of making preserved meat in southwestern China is shown here to be a major source of particulate pollution. Improved measures to reduce emissions from the smoking of meat should be introduced to improve air quality in regions where smoking meat activity prevails.
Afficher plus [+] Moins [-]The association of environmental toxicants and autism spectrum disorders in children Texte intégral
2017
Ye, Bi Su | Leung, Anna Oi Wah | Wong, Ming Hung
Autism spectrum disorders (ASDs) is a set of complex neurodevelopment disorders that is prevalent in children and is increasing at a steady rate in recent years. However, the etiology of autism is still poorly understood. Humans are at higher risk of chemical exposure than in the past as a result of the increasing usage of chemicals in various fields, including food preservation, agriculture, industrial production, etc. A number of environmental agents have been suggested as contributing factors to ASD pathogenesis, which includes heavy metals (Hg and Pb), persistent organic pollutants (DDT, PBDEs and PCBs) and emerging chemicals of concern (phthalates and BPA). These three main categories of toxicants could be the cause of ASD in children. Recent research into the causes of ASD that have been linked to environment factors are reviewed in this paper. There are evidence supporting the etiological link between exposure to environmental toxicants and the development of ASD. Children exposed to these toxicants in the environment exhibit signature traits of ASD and have been reported with high body burdens of these chemicals and/or their metabolites, which may provide an explanation for the observed relation, yet comprehensive evidence in humans is limited, highlighting the need for further research.
Afficher plus [+] Moins [-]Aryl- and alkyl-phosphorus-containing flame retardants induced mitochondrial impairment and cell death in Chinese hamster ovary (CHO-k1) cells Texte intégral
2017
Huang, Chao | Li, Na | Yuan, Shengwu | Ji, Xiaoya | Ma, Mei | Rao, Kaifeng | Wang, Zijian
Phosphorus-containing flame retardants (PFRs) are increasingly in demand worldwide as replacements for brominated flame retardants (BFRs), but insufficient available toxicological information on PFRs makes assessing their health risks challenging. Mitochondria are important targets of various environmental pollutants, and mitochondrial dysfunction may lead to many common diseases. In the present study, mitochondria impairment-related endpoints were measured by a high content screening (HCS) assay for 11 selected non-halogen PFRs in Chinese hamster ovary (CHO-k1) cells. A cluster analysis was used to categorize these PFRs into three groups according to their structural characteristics and results from the HCS assay. Two groups, containing long-chain alkyl-PFRs and all aryl-PFRs, were found to cause mitochondrial impairment but showed different mechanisms of toxicity. Due to the high correlation between cell death and mitochondrial impairment, two PFRs with different structures, trihexyl phosphate (THP) and cresyl diphenyl phosphate (CDP), were selected and compared with chlorpyrifos (CPF) to elucidate their mechanism of inducing cell death. THP (an alkyl-PFR) was found to utilize a similar pathway as CPF to induce apoptosis. However, cell death induced by CDP (an aryl-PFR) was different from classical necrosis based on experiments to discriminate among the different modes of cell death. These results confirm that mitochondria might be important targets for some PFRs and that differently structured PFRs could function via distinct mechanisms of toxicity.
Afficher plus [+] Moins [-]Rapid evolution of tolerance to road salt in zooplankton Texte intégral
2017
Coldsnow, Kayla D. | Mattes, Brian M. | Hintz, William D. | Relyea, Rick A.
Organisms around the globe are experiencing novel environments created by human activities. One such disturbance of growing concern is the salinization of freshwater habitats from the application of road deicing salts, which creates salinity levels not experienced within the recent evolutionary history of most freshwater organisms. Moreover, salinization can induce trophic cascades and alter the structure of freshwater communities, but knowledge is still scarce about the ability of freshwater organisms to adapt to elevated salinity. We examined if a common zooplankton of freshwater lakes (Daphnia pulex) could evolve a tolerance to the most commonly used road deicing salt (sodium chloride, NaCl). Using a mesocosm experiment, we exposed freshwater communities containing Daphnia to five levels of NaCl (15, 100, 200, 500, and 1000 mg Cl− L−1). After 2.5 months, we collected Daphnia from each mesocosm and raised them in the lab for three generations under low salt conditions (15 mg Cl− L−1). We then conducted a time-to-death experiment with varying concentrations of NaCl (30, 1300, 1500, 1700, 1900 mg Cl− L−1) to test for evolved tolerance. All Daphnia populations exhibited high survival when subsequently exposed to the lowest salt concentration (30 mg Cl− L−1). At the intermediate concentration (1300 mg Cl− L−1), however, populations previously exposed to elevated concentrations (i.e.100–1000 mg Cl− L−1) had higher survival than populations previously exposed to natural background levels (15 mg Cl− L−1). All populations survived poorly when subsequently exposed to the highest concentrations (1500, 1700, and 1900 mg Cl− L−1). Our results show that the evolution of tolerance to moderate levels of salt can occur within 2.5 months, or 5–10 generations, in Daphnia. Given the importance of Daphnia in freshwater food webs, such evolved tolerance might allow Daphnia to buffer food webs from the impacts of freshwater salinization.
Afficher plus [+] Moins [-]Association between ambient air pollution and hospitalization for ischemic and hemorrhagic stroke in China: A multicity case-crossover study Texte intégral
2017
Liu, Hui | Tian, Yaohua | Xu, Yan | Huang, Zhe | Huang, Chao | Hu, Yonghua | Zhang, Jun
There is growing interest in the association between ambient air pollution and stroke, but few studies have investigated the association in developing countries. The primary objective of this study was to examine the association between levels of ambient air pollutants and hospital admission for stroke in China. A time-stratified case-crossover analysis was conducted between 2014 and 2015 in 14 large Chinese cities among 200,958 ischemic stroke and 41,746 hemorrhagic stroke hospitalizations. We used conditional logistic regression to estimate the percentage changes in stroke admissions in relation to interquartile range increases in air pollutants. Air pollution was positively associated with ischemic stroke. A difference of an interquartile range of the 6-day average for particulate matter less than 10 μm in aerodynamic diameter, sulfur dioxide, nitrogen dioxide, carbon monoxide, and ozone corresponded to 0.7% (95% CI: 0%, 1.4%), 1.6% (95% CI: 1.0%, 2.3%), 2.6% (95% CI: 1.8%, 3.5%), 0.5% (95% CI: −0.2%, 1.1%), and 1.3% (95% CI: 0.3%, 2.3%) increases in ischemic stroke admissions, respectively. For hemorrhagic stroke, we observed the only significant association in relation to nitrogen dioxide on the current day (percentage change: 1.6%; 95% CI: 0.3%, 2.9%). Our findings contribute to the limited scientific literature concerning the effect of ambient air pollution on stroke in developing countries. Our findings may have significant public health implications for primary prevention of stroke in China.
Afficher plus [+] Moins [-]