Affiner votre recherche
Résultats 791-800 de 1,546
Removal of Remazol Brilliant Blue Dye from Dye-Contaminated Water by Adsorption Using Red Mud: Equilibrium, Kinetic, and Thermodynamic Studies Texte intégral
2012
Ratnamala, G. M. | Shetty, K Vidya | Srinikethan, G.
Utilization of industrial solid wastes for the treatment of wastewater from another industry could help environmental pollution abatement, in solving both solid waste disposal as well as liquid waste problems. Red mud (RM) is a waste product in the production of alumina and it poses serious pollution hazard. The present paper focuses on the possibility of utilization of RM as an adsorbent for removal of Remazol Brilliant Blue dye (RBB), a reactive dye from dye-contaminated water. Adsorption of RBB, from dye-contaminated water was studied by adsorption on powdered sulfuric acid-treated RM. The effect of initial dye concentration, contact time, initial pH, and adsorbent dosage were studied. Langmuir isotherm model has been found to represent the equilibrium data for RBB–RM adsorption system better than Freundlich model. The adsorption capacity of RM was found to be 27.8 mg dye/g of adsorbent at 40 °C. Thermodynamic analysis showed that adsorption of RBB on acid-treated RM is an endothermic reaction with ∆H ⁰ of 28.38 kJ/mol. The adsorption kinetics is represented by second-order kinetic model and the kinetic constant was estimated to be 0.0105 ± 0.005 g/mg min. Validity of intra-particle diffusion kinetic model suggested that among the mass transfer processes during the dye adsorption process, pore diffusion is the controlling step and not the film diffusion. The process can serve dual purposes of utilization of an industrial solid waste and the treatment of liquid waste.
Afficher plus [+] Moins [-]Effect of Assessment Scale on Spatial and Temporal Variations in CH4, CO 2, and N 2O Fluxes in a Forested Wetland Texte intégral
2012
Dai, Zhaohua | Trettin, Carl C. | Li, Changsheng | Li, Harbin | Sun, Ge | Amatya, Devendra M.
Emissions of methane (CH4), carbon dioxide (CO2), and nitrous oxide (N2O) from a forested watershed (160 ha) in South Carolina, USA, were estimated with a spatially explicit watershed-scale modeling framework that utilizes the spatial variations in physical and biogeochemical characteristics across watersheds. The target watershed (WS80) consisting of wetland (23%) and upland (77%) was divided into 675 grid cells, and each of the cells had unique combination of vegetation, hydrology, soil properties, and topography. Driven by local climate, topography, soil, and vegetation conditions, MIKE SHE was used to generate daily flows as well as water table depth for each grid cell across the watershed. Forest-DNDC was then run for each cell to calculate its biogeochemistry including daily fluxes of the three greenhouse gases (GHGs). The simulated daily average CH4, CO2 and N2O flux from the watershed were 17.9 mg C, 1.3 g C and 0.7 mg N m−2, respectively, during the period from 2003–2007. The average contributions of the wetlands to the CH4, CO2 and N2O emissions were about 95%, 20% and 18%, respectively. The spatial and temporal variation in the modeled CH4, CO2 and N2O fluxes were large, and closely related to hydrological conditions. To understand the impact of spatial heterogeneity in physical and biogeochemical characteristics of the target watershed on GHG emissions, we used Forest-DNDC in a coarse mode (field scale), in which the entire watershed was set as a single simulated unit, where all hydrological, biogeochemical, and biophysical conditions were considered uniform. The results from the field-scale model differed from those modeled with the watershed-scale model which considered the spatial differences in physical and biogeochemical characteristics of the catchment. This contrast demonstrates that the spatially averaged topographic or biophysical conditions which are inherent with field-scale simulations could mask “hot spots” or small source areas with inherently high GHGs flux rates. The spatial resolution in conjunction with coupled hydrological and biogeochemical models could play a crucial role in reducing uncertainty of modeled GHG emissions from wetland-involved watersheds.
Afficher plus [+] Moins [-]A Catabolic Activity of Sphingomonas wittichii RW1 in the Biotransformation of Carbazole Texte intégral
2012
Nam, In-Hyun | Kim, Young-Mo | Murugesan, Kumarasamy | Chang, Yoon Seok
The well-known bacterium Sphingomonas wittichii RW1 catabolically degrades dibenzo-p-dioxin and dibenzofuran, as well as their chlorinated derivatives. The catabolic degradation of dioxin is initiated by a ring-hydroxylating dioxygenase. The biotransformation of carbazole by S. wittichii RW1 was determined in the present study. Dioxin dioxygenase from the dibenzofuran induced RW1 strain was thought to be unable to attack carbazole, which includes a heterocyclic aromatic dibenzopyrrole system. However, our results showed that carbazole was transformed to anthranilic acid and catechol. The color of the culture suspension changed upon addition of carbazole due to formation of a nitrogen-containing metabolite. Relevant metabolic intermediates were identified by gas chromatographic mass spectrometry and electrospray ionization time-of-flight mass spectrometry with comparison to the corresponding authentic compounds. The dioxygenase of the dibenzofuran induced RW1 attacked at the angular position adjacent to the nitrogen atom to give a dihydroxylated metabolic intermediate. Contrary to predictions made in previous reports, S. wittichii RW1 displayed positive catabolic activity toward carbazole.
Afficher plus [+] Moins [-]Development of a Sequential Decision-Making Model for Controlling Multiple Air Pollutants Under Stochastic Uncertainty Texte intégral
2012
Lv, Ying | Huang, Guohe | Li, Yongping | Yang, Zhifeng | Sun, Wei
Most of previous programming methods for air-quality management merely considered single pollutant from point sources. However, air pollution control is characterized by multiple pollutants from various sources. Meanwhile, uncertain information in the decision-making process cannot be neglected in the real-world cases. Thus, an inexact multistage stochastic programming model with joint chance constraints based on the air quality index (air-quality management model with joint chance constraints (AQM-JCC)) is developed for controlling multiple pollutants deriving from point and mobile sources and applied to a regional air-quality management system. In the model, integrated air quality associated with the joint probability existing in terms of environmental constraints is evaluated; uncertainties expressed as probability distributions and interval values are addressed; risks of violating the overall air-quality target under joint chance constraints are examined; and dynamics of system uncertainties and decision processes under a complete set of scenarios within a multistage context are reflected. The results indicate that useful solutions for air quality management practices in sequential stochastic decision environments have been generated, which can help decision makers to identify cost-effective control strategies for overall air quality improvement under uncertainties.
Afficher plus [+] Moins [-]Spatiotemporal Variations in Nitrous Oxide Emissions from an Open Fen on the Qinghai–Tibetan Plateau: a 3-Year Study Texte intégral
2012
Chen, Huai | Wang, Yanfen | Wu, Ning | Zhu, Dan | Li, Wei | Gao, Yongheng | Zhu, Qiu’an | Yang, Gang | Peng, Changhui
To understand spatial and temporal variations of nitrous oxide (N₂O) fluxes, we chose to measure N₂O emissions from three plant stands (Kobresia tibetica, Carex muliensis, and Eleocharis valleculosa stands) in an open fen on the northeastern Qinghai–Tibetan plateau during the growing seasons from 2005 to 2007. The overall mean N₂O emission rate was about 0.018 ± 0.056 mg N m⁻² h⁻¹ during the growing seasons from 2005 to 2007, with highly spatiotemporal variations. The hummock (K. tibetica stand) emitted N₂O at the highest rate about 0.025 ± 0.051 mg N m⁻² h⁻¹, followed by the hollow stands: the E. valleculosa stand about 0.012 ± 0.046 mg N m⁻² h⁻¹ and the C. muliensis stand about 0.017 ± 0.068 mg N m⁻² h⁻¹. Within each stand, we also noted significant variations of N₂O emission. We also observed the significant seasonal and inter-annual variation of N₂O fluxes during the study period. The highest N₂O emission rate was all recorded in July or August in each year from 2005 to 2007. Compared with the mean value of 2005, we found the drought of 2006 significantly increased N₂O emissions by 104 times in the E. valleculosa stand, 45 times in K. tibetica stand, and 18 times in the C. muliensis stand. Though there was no significant relation between standing water depths and N₂O emissions, we still considered it related to the spatiotemporal dynamics of soil water regime under climate change.
Afficher plus [+] Moins [-]Hexavalent Chromium Dynamics and Uptake in Manure-Added Soil Texte intégral
2012
Molla, K. | Dimirkou, A. | Antoniadis, V.
The soil dynamics of hexavalent Cr, a particularly mobile and toxic metal, is of a great environmental concern, and its availability to plants depends on various soil properties including soil organic matter. Thus, in a pot experiment, we added 50 mg Cr(VI) kg⁻¹ soil and studied Cr(VI) soil extractability and availability to spinach, where we applied both natural (zeolite), synthetic adsorptive materials (goethite and zeolite/goethite) and organic matter with farmyard manure. We found that, compared to the unamended control plants, dry matter weight in the Cr(VI)-added soil was greatly decreased to 17 % of the control, and height was decreased to 34 % of the control, an indication of Cr toxicity. Also, exchangeable Cr(VI) levels in soil decreased back to the unamended control even in the first soil sampling time. This was much faster than the exchangeable Cr(VI) levels in the mineral-added soil, where Cr(VI) levels were decreased to the levels of the unamended control in the third sampling time. The positive effect of organic matter was also indicated in the Cr quantity soil-to-plant transfer coefficient (in grams of Cr in plant per kilogram of Cr added in soil), a phyto-extraction index, which was significantly higher in the manure-amended (1.111 g kg⁻¹) than in the mineral-added treatments (0.568 g kg⁻¹). Our findings show that organic matter eliminates the toxicity of added Cr(VI) faster than the mineral phases do and enhances the ability of spinach to extract from soil greater quantities of Cr(VI) compared to mineral-added soils.
Afficher plus [+] Moins [-]Behavior of Natural Estrogens in Reservoir: Investigations Based on Continuous Flow Experiments and Model Analysis Texte intégral
2012
Desmiarti, Reni | Li, Jiefeng | Li, Fusheng
The behavior of estrone (E1) and 17β-estradiol (E2) in relatively closed water environment was studied by continuous flow experiment using sediments from a freshwater reservoir. For this, four sediment columns (two oxic ones and two anoxic ones) were employed, which were structured by packing 30 cm of undisturbed sediment and 60 cm of overlying water collected from two sites within a reservoir. A mass balance model that considered the influent flux, the effluent flux, mass transfer, sorption, and biodegradation was proposed to describe the behavior of E2 and E1 in the columns. The results indicated that the water–sediment partition coefficient of E1 [Formula: see text] was higher than E2 [Formula: see text]. The degradation rate of E1 (k E1) was smaller than E2 (k E2). Under both oxic and anoxic conditions, E1 was formed from E2. Furthermore, to clarify the impact of the model parameters such as the hydraulic retention time (HRT), K d, and k on the behavior of E2 and E1, variance analysis was performed based on the results of model simulations. The results showed that the concentrations of E2 and E1 in the column effluent were controlled most significantly by the sorption capacity of the natural estrogens onto sediment particles, with the determined contributory ratios changing in the order of sorption > HRT > degradation.
Afficher plus [+] Moins [-]Competitive Sorption of Arsenate and Phosphate on Aluminum Mining By-product Texte intégral
2012
Costa, E. T. S. | Guilherme, L. R. G. | Lopes, G. | Lima, J. M. | Curi, N.
Studies concerning competitive sorption of anions on oxidic materials eligible to be used as soil amendments are crucial for a better understanding of the adsorbent’s effectiveness and ion mobility/availability in the environment. This study evaluated mono-/multi-element adsorption of phosphate and arsenate on aluminum (AMB) and iron mining by-products (IMB; used for comparison) and measured the effect of pH and thermal pretreatments on P and As adsorption on AMB and IMB. We also evaluated whether the desorption of As previously adsorbed on AMB and IMB increases with the addition of increasing doses of P. For adsorption, each adsorbent was reacted at selected pHs with solutions containing As and P individually or in combination. Non-competitive desorption was performed with 30 mmol L⁻¹ NaCl. Arsenate displacement was evaluated by reaction of the adsorbents containing previously adsorbed As with P-containing solutions. The competition between P and As decreased the adsorption of these anions by 2.7 and 23.2 %, respectively. Increasing pH decreased adsorption of both As and P, whereas the thermal pretreatment increased P adsorption by 40 % and As adsorption by 15 %. Phosphate in solution increased As desorption, with each millimoles per kilogram of adsorbed P desorbing as much as 2.3 ± 1.1 mmol kg⁻¹ of As.
Afficher plus [+] Moins [-]The Effects of Fuel Evaporation and Biomass Burning on Toluene Concentrations in an Urban Area Texte intégral
2012
Kavouras, Ilias G. | Zielinska, Barbara
Using an automated gas chromatography system coupled with an online sampling/thermal desorption module, benzene, toluene, and their alkylated derivatives were measured in Las Vegas, Nevada from 3 July to 28 August 2008. The levels of hydrocarbons were comparable to those typically found in urban environments. Statistically significant (at 95 % level) higher concentrations were measured on mid-week days as compared with those measured during weekends. This was correlated to a local traffic pattern rather than traffic on highways. The concentrations of aromatic hydrocarbons also increased during periods when transport of smoke from wildfires in central and north California was identified by remote sensing but these levels were comparable to other days with volatile organic compounds concentrations. The high toluene/benzene ratios and the estimated photochemical age of air masses implied the contribution of other local sources. Fuel evaporation accounted for the vast majority of toluene enhanced concentrations in early July (as compared with those measured in June) for sites within the urban grid, but very little for sites located outside the urban area.
Afficher plus [+] Moins [-]Intracellular Versus Extracellular Iron Accumulation in Freshwater Periphytic Mats Across a Mine Water Treatment Lagoon Texte intégral
2012
Letovsky, Erin | Heal, Kate V. | Carvalho, Laurence | Spears, Bryan M.
Despite the importance of periphyton–metal interactions in bioremediation schemes and in phosphorus (P) cycling, the processes controlling metal accumulation in periphytic mats are still poorly understood. Iron (Fe) accumulation in periphytic mats was examined across a Fe settlement lagoon receiving mine drainage in Scotland, UK, between March and June 2008. Quantification and mapping of intracellular and extracellular Fe concentrations in periphyton samples using scanning electron microscopy–energy dispersive spectroscopy suggested that Fe accumulation was dominated by the association of Fe-rich precipitates with the extracellular polymeric substances matrix, rather than biotic uptake. Intracellular Fe concentrations were significantly higher in periphyton samples exposed to the highest dissolved Fe concentrations. Neither intracellular nor extracellular Fe concentrations were significantly affected by light availability or cell density. While diatoms dominated the periphyton communities there was no significant association of diatom functional groups with Fe accumulation, indicating that community composition may not affect the function of periphytic mats with respect to Fe removal. Scale-up calculations based on the mean measured Fe accumulation rate by periphyton substrates of 0.021Â gâm−2Â day−1 showed that exposure of large surface areas of periphyton substrate in the settlement lagoon would only increase the Fe removal efficiency of the lagoon by c.1%.
Afficher plus [+] Moins [-]