Affiner votre recherche
Résultats 791-800 de 6,536
Comparative study of polycyclic aromatic hydrocarbons (PAHs) and heavy metals (HMs) in corals, sediments and seawater from coral reefs of Hainan, China
2020
Yang, Tinghan | Diao, Xiaoping | Cheng, Huamin | Wang, Haihua | Zhou, Hailong | Zhao, Hongwei | Chen, Chien Min
This work investigated levels of PAHs and HMs in fourteen species from seven genera of scleractinian corals, adjacent sediments, and surface seawater in Hainan, China. The sources of contaminations were analyzed as well. The results showed that scleractinian corals had a relatively higher bioaccumulation capacity for PAHs from sediments than for HMs. There were inter-species differences for these contaminants enriched in corals. Pavona varians and Porites lutea could accumulate PAHs more readily. While higher concentrations of Cr, Mn and Pb occurred in Favites flexuosa, other metal levels, such as for Ni, Cu, Zn and As, were found to be elevated in Pocillopora damicornis, as well as for Cd in Acropora echinata. It was found that PAHs originated from petrogenic and pyrolytic sources, and were mainly linked to onshore and on-sea activities, such as motorboats. Mn, Ni, As and Cd were from crustal materials or natural weathering, while Cr, Cu, Zn and Pb were non-crustal origin connecting with the use of anti-fouling boat paint and agricultural and/or aquacultural chemicals. This study suggested that corals could serve as good bioindicators for two types of chemical pollution in the reef system, especially for the two species P. varians and P. lutea for PAHs contaminants.
Afficher plus [+] Moins [-]A novel and green sulfur fertilizer from CS2 to promote reproductive growth of plants
2020
Yue, Xiaoqing | Wang, Haozhe | Kong, Jing | Li, Bin | Yang, Jinrong | Li, Qiang | Zhang, Jianbin
Carbon disulfide (CS₂) is seen an odor-toxic organic sulfur compound, which presents a major impact on global climate change. Therefore, the conversion of CS₂ into valuable chemicals is the key to reduce the concentration of CS₂ in the atmosphere. On the basis of a CS₂ fixation strategy, CS₂-storage materials (CS₂SMs) are firstly synthesized by the reaction of CS₂ with a binary ion-like liquid systems of ethylenediamine (EDA) and ethylene glycol derivatives (EGs) under mild condition. In view of the serious shortage of sulfur fertilizer and its important position in global agricultural production, it is a promising choice to use the CS₂SMs as a new type of green sulfur fertilizer to promote the growth of eggplant, tomato, sweet pepper and cucumber. In this work, the influence of CS₂SMs on the growth of plants were studied by taking plants irrigated by using various aqueous CS₂SMs solutions as experimental groups, and those irrigated by using water and NH₄HCO₃ as control groups. The experimental results showed that all CS₂SMs could promote plant height, stem diameter, root weight, flower bud number and leaf size. Especially, several CS₂SMs presented significant influence on fluorescence and fruit number. Further studies showed that the CS₂SMs as new energy resources sulfur-containing boosted leaf area, improved root development, enhanced photosynthesis and soil nutrient uptake, and promoted vegetative and reproductive growth of these four types of plants. Thus, this work provided a new strategy for the use of CS₂ as an indirect energy source for the experimental four plants.
Afficher plus [+] Moins [-]A preliminary analysis of microplastics in edible versus non-edible tissues from seafood samples
2020
Akoueson, Fleurine | Sheldon, Lisa M. | Danopoulos, Evangelos | Morris, Steve | Hotten, Jessica | Chapman, Emma | Li, Jiana | Rotchell, Jeanette M.
Plastics have been widely reported to be present in the environment yet there are still many questions regarding the extent of this and the impacts these may have on both the environment and human health. The purpose of this investigation is to determine levels of micro and mesoplastic (MP), in the 1–5000 μm range, in commercially important species of finfish and shellfish. Additionally, to determine and compare the relative MP levels in edible versus non-edible tissues, and consider the wider implications in terms of human health concerns with a preliminary risk identification approach. For several fish species, samples taken from typically non-edible (gills, digestive system) and edible (muscle) flesh, and were analysed separately. Scallops, where all tissues are edible, were analysed whole. Significant differences were observed in the number of particles isolated from the finfish gills and digestive tissues relative to the control samples, but not in the edible flesh. For scallops, the abundance of particles in the Scottish samples did not vary significantly from the control, while the Patagonian scallops displayed significantly higher numbers of MPs. Characterisation of MPs by FTIR microscopy found that 16–60% (depending on species) were polyethylene terephthalate (PET) and polyethylene (PE) in origin. The risk identification results validate MPs as an emerging risk in the food chain and establish seafood as a vector for the exposure and uptake of MPs through the ingestion route for humans. Levels of MPs in seafood, and a direct link to the human food chain, suggests that their quantification be included as one food safety measure.
Afficher plus [+] Moins [-]Psychoactive pharmaceuticals in aquatic systems: A comparative assessment of environmental monitoring approaches for water and fish
2020
Grabicová, Kateřina | Grabic, Roman | Fedorova, Ganna | Kolářová, Jitka | Turek, Jan | Brooks, Bryan W. | Randák, Tomáš
Environmental monitoring and surveillance studies of pharmaceuticals routinely examine occurrence of substances without current information on human consumption patterns. We selected 10 streams with diverse annual flows and differentially influenced by population densities to examine surface water occurrence and fish accumulation of select psychoactive medicines, for which consumption is increasing in the Czech Republic. We then tested whether passive sampling can provide a useful surrogate for exposure to these substances through grab sampling, body burdens of young of year fish, and tissue specific accumulation of these psychoactive contaminants. We identified a statistically significant (p < 0.05) relationship between ambient grab samples and passive samplers in these streams when psychoactive contaminants were commonly quantitated by targeted liquid chromatography with tandem mass spectrometry, though we did not observe relationships between passive samplers and tissue specific pharmaceutical accumulation. We further observed smaller lotic systems with elevated contamination when municipal effluent discharges from more highly populated cities contributed a greater extent of instream flows. These findings identify the importance of understanding age and species specific differences in fish uptake, internal disposition, metabolism and elimination of psychoactive drugs across surface water quality gradients.
Afficher plus [+] Moins [-]Regulatory loop between lncRNA FAS-AS1 and DNMT3b controls FAS expression in hydroquinone-treated TK6 cells and benzene-exposed workers
2020
Yuan, Qian | Zhang, Haiqiao | Pan, Zhijie | Ling, Xiaoxuan | Wu, Minhua | Gui, Zhiming | Chen, Jialong | Peng, Jianming | Liu, Zhidong | Tan, Qiang | Huang, Dongsheng | Xiu, Liangchang | Chen, Wen | Shi, Zhizhen | Liu, Linhua
Hydroquinone (HQ), one of the main metabolites of benzene, is a well-known human leukemogen. However, the specific mechanism of how benzene or HQ contributes to the development of leukemia is unknown. In a previous study, we demonstrated the upregulation of DNA methyltransferase (DNMT) expression in HQ-induced malignant transformed TK6 (HQ-TK6) cells. Here, we investigated whether a regulatory loop between the long noncoding RNA FAS-AS1 and DNMT3b exists in HQ-TK6 cells and benzene-exposed workers. We found that the expression of FAS-AS1 was downregulated in HQ-TK6 cells and workers exposed to benzene longer than 1.5 years via histone acetylation, and FAS-AS1 expression was negatively correlated with the time of benzene exposure. Restoration of FAS-AS1 in HQ-TK6 cells promoted apoptosis and inhibited tumorigenicity in female nude mice. Interestingly, treatment with a DNMT inhibitor (5-aza-2-deoxycytidine), histone deacetylase inhibitor (trichostatin A), or DNMT3b knockout led to increased FAS-AS1 through increased H3K27ac protein expression in HQ-TK6 cells, and DNMT3b knockout decreased H3K27ac and DNMT3b enrichment to the FAS-AS1 promoter region, which suggested that DNMT3b and/or histone acetylation involve FAS-AS1 expression. Importantly, restoration of FAS-AS1 resulted in reduced expression of DNMT3b and SIRT1 and increased expression of FAS in both HQ-TK6 cells and xenograft tissues. Moreover, the average DNMT3b expression in 17 paired workers exposed to benzene within 1.5 years was decreased, but that of the remaining 103 paired workers with longer exposure times was increased. Conversely, DNMT3b was negatively correlated with FAS-AS1 expression. Both FAS-AS1 and DNMT3b influenced the enrichment of H3K27ac in the FAS promoter region by regulating the expression of SIRT1, consequently upregulating FAS expression. Taken together, these observations demonstrate crosstalk between FAS-AS1 and DNMT3b via a mutual inhibition loop and indicate a new mechanism by which FAS-AS1 regulates the expression of FAS in benzene-related carcinogenesis.
Afficher plus [+] Moins [-]Development of a sequential extraction and speciation procedure for assessing the mobility and fractionation of metal nanoparticles in soils
2020
Choleva, Tatiana G. | Tsogas, George Z. | Vlessidis, Athanasios G. | Giokas, Dimosthenis L.
This study describes the development of a sequential extraction procedure for the evaluation of metal nanoparticle mobility and bioaccessibility in soils. The procedure, that was developed using gold nanoparticles (AuNPs) as model species, relies on the fractionation of nanoparticles by sequentially dissolving soil matrix components (carbonates, metal oxides, organic matter and mineral phases) in order to release the entrapped nanoparticle species in the extract solution. By summing up the concentration of AuNPs recovered in each fraction it was found that 93.5% of the spiked AuNP concentration could be recovered which satisfactorily represents the nominal AuNP concentration in the soil. The efficiency of the procedure was found to depend on several procedural artifacts related to the separation of AuNPs from soil colloids and the reactivity of the extraction reagents with AuNPs and their precursor metal ions. Based on the results obtained a protocol for the speciation of the AuNPs and Au ions in the soil sample was also developed. The results of the study show that both AuNPs and Au ions are mainly associated with soil organic matter, which significantly reduces their mobility, while a small amount (<10%) is associated with metal oxides which are more mobile and potentially bioaccessible. The developed procedure provides a springboard for further development of sequential extraction procedures of metal nanoparticles in soils that could be used to assess both the exposure and release of metal nanoparticles and their precursor metal ions in the environment (as total extractable concentration) as well as provide evidence regarding their bioaccessibility and potential bioavailability by determining the concentration of nanoparticles in each specific soil fraction.
Afficher plus [+] Moins [-]Emerging perfluoroalkyl substance impacts soil microbial community and ammonia oxidation
2020
Ke, Yanchu | Chen, Jianfei | Hu, Xiaoyan | Tong, Tianli | Huang, Jun | Xie, Shuguang
Legacy perfluoroalkyl and poly-fluoroalkyl substances (PFASs) are gradually phased out because of their persistence, bioaccumulation, toxicity, long-distance transport and ubiquity in the environment. Alternatively, emerging PFASs are manufactured and released into the environment. It is accepted that PFASs can impact microbiota, although it is still unclear whether emerging PFASs are toxic towards soil microbiota. However, it could be assumed that OBS could impact soil microorganisms because it had similar chemical properties (toxicity and persistence) as legacy PFASs. The present study aimed to explore the influences of an emerging PFAS, namely sodium p-perfluorous nonenoxybenzene sulfonate (OBS), on archaeal, bacterial, and ammonia-oxidizing archaea (AOA) and bacteria (AOB) communities and ammonia oxidation. Grassland soil was amended with OBS at different dosages (0, 1, 10 and 100 mg/kg). After OBS amendment, tolerant microorganisms (e.g., archaea and AOA) were promoted, while susceptive microorganisms (e.g., bacteria and AOB) were inhibited. OBS amendment greatly changed microbial structure. Potential nitrifying activity was inhibited by OBS in a dose-dependent manner during the whole incubation. Furthermore, AOB might play a more important role in ammonia oxidation than AOA. Overall, OBS influenced ammonia oxidation by regulating the activity, abundance and structure of ammonia-oxidizing microorganisms, and could also exert influences on total bacterial and archaeal populations.
Afficher plus [+] Moins [-]Are biodegradable plastics a promising solution to solve the global plastic pollution?
2020
Shen, Maocai | Song, Biao | Zeng, Guangming | Zhang, Yaxin | Huang, Wei | Wen, Xiaofeng | Tang, Wangwang
A large amount of plastic waste has been discharged into the environment worldwide, which causes the current white pollution problem. The accumulated waste plastics in the environment can be furtherly degraded into small pieces such microplastics and nanoplastics through weathering, which will do more harm to the environment and humans than large plastics. Therefore, plastic production and disposal are needed to be considered. Biodegradable plastics (BPs) have become the focus of recent research due to their potential biodegradability and harmlessness, which would be the most effective approach to manage the issue of plastic waste environmental accumulation. However, in the long run, it is uncertain whether BPs can be a promising solution to waste disposal and global plastic pollution. Consequently, both sides of the dispute are discussed in this paper. At present, most conventional plastics can not be replaced by theses BPs. Biodegradation of BPs needs certain environmental conditions, which are not always reliable in the environment. Additionally, changes in human behavioral awareness will also affect the development and application of BPs. BPs should not be considered as a technical solution, thus excusing our environmental responsibility, because littering does not change with the promotion of an effective technology. As such, the conclusion is that BPs may be a part of the solution. The effectiveness in providing environmentally solutions for plastic waste management depends on the combination of affordable waste classification technologies and investment in organic waste treatment facilities. Therefore, there is still a long way to go to solve the global plastic pollution through BPs.
Afficher plus [+] Moins [-]Lead distribution in urban street dust and the relationship with mining, gross domestic product GDP and transportation and health risk assessment
2020
Chang, Xuan | Li, Ying-Xia
Lead (Pb) is an important pollutant and it is of significance to explore the Pb distribution, influencing factors and health risk. Pb concentration and mass load per unit area in 385 street dust samples collected from 19 cities in China were determined during 2011-2013. The results show that the Pb concentration are 68.8, 105.4, 41.7, 49.7, 75.6, 81.7, 131.9, 67.5, 109.3, 164.1, 74.8, 66.4, 99.8, 58.4, 114.0, 59.6, 103.7, 55.4 and 80.4 for Beijing, Chengdu, Daqing, Harbin, Jilin, Jinan, Kunming, Lanzhou, Luoyang, Panzhihua, Qingdao, Yinchuan, Guangzhou, Tangshan, Xi’an, Guangyuan, Nanjing, Taiyuan and Tianjin, respectively. The Pb pollution level of urban street dust varies among cities in the range of 1.72–5.56 times higher than soil background values. The allometric function can fit the change in Pb concentration with particle size well. The medium-sized (38–120 μm) particles contributed 60.2%–80.4% to the Pb load and should be highlighted when selecting street dust management techniques. Influenced by the distribution of Pb ore, the Pb concentration of urban street dust in China shows obvious regional differences, with value in the south 112% higher than that in the north. Among all kinds of mining types, metal-related mining activities discharge a large amount of Pb dust in the process of crushing and smelting, thus contributing most to the Pb load. The Pb load was also affected by transportation. The relationship between Pb load and gross domestic product (GDP) was described with the environmental Kuznets curve (EKC) model, which indicated that the Pb emissions of most cities were still increasing. Finally, the human health risk assessment model with adjusted parameters showed that the Pb risk of all cities was below the threshold. Despite all this, given the EKC law of Pb emission, long-term follow-up assessments are needed.
Afficher plus [+] Moins [-]Biotransformation of the herbicide nicosulfuron residues in soil and seven sulfonylurea herbicides by Bacillus subtilis YB1: A climate chamber study
2020
Zhang, Zhe | Yang, Dongchen | Si, Helong | Wang, Jiaying | Parales, Rebecca E. | Zhang, Jinlin
Bacillus subtilis YB1 is a strain that can efficiently transform nicosulfuron. In order to study its remediation ability and effects on other microorganisms in the soil, indoor biological remediation experiments and rhizosphere microbial diversity analysis were performed. B. subtilis YB1 granules were prepared and applied to the nicosulfuron contaminated soil. The concentration of nicosulfuron was detected by ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) and changes in the physiological indicators of wheat were measured. At the same time, the changes in the rhizosphere soil microbial diversity were determined by 16S RNA sequencing. Results showed that the YB1 granules made a contribution to the transformation of nicosulfuron (0.05 mg kg⁻¹) in the soil within 55 days. The physiological indicators of wheat also showed consistent result about nicosulfuron transformation. Rhizosphere soil microbial diversity results indicated the relative abundance of Firmicutes decreased (3.0%–0.35%) and Acidobacteria first decreased (25.82%–22.38%) and then increased (22.3%–26.1%) with nicosulfuron added (N group). The relative abundance of Acidobacteria first decreased (25.8%–15.3%) and then increased (15.3%–21.7%) while Proteobacteria increased (26.5%–38.08%). At the same time, Firmicutes first increased (2.6%–12.3%) and then decreased to original level (12.3%–0.7%) in the N group with YB1 granules (NYB1 group). Members of the genus Bacillus initially increased and then decreased to the original level as the Control group, therefore, they did not become dominant in the rhizosphere soil. Alpha diversity analyses showed no obvious differences in species diversity among the N, NYB1 and Control groups. So YB1 did not have obvious influence on the rhizosphere microbial community structure during nicosulfuron transformation, which only had some effect on species abundance. This study revealed the successful indoor bioremediation of nicosulfuron in the soil, providing a potential strategy for solving the problem of nicosulfuron contamination.
Afficher plus [+] Moins [-]