Affiner votre recherche
Résultats 811-820 de 5,151
Hydrological and pollution processes in mining area of Fenhe River Basin in China Texte intégral
2018
Yang, Yonggang | Meng, Zhilong | Jiao, Wentao
The hydrological and pollution processes are an important science problem for aquatic ecosystem. In this study, the samples of river water, reservoir water, shallow groundwater, deep groundwater, and precipitation in mining area are collected and analyzed. δD and δ¹⁸O are used to identify hydrological process. δ¹⁵N-NO₃⁻ and δ¹⁸O-NO₃⁻ are used to identify the sources and pollution process of NO₃⁻. The results show that the various water bodies in Fenhe River Basin are slightly alkaline water. The ions in the water mainly come from rock weathering. The concentration of SO₄²⁻ is high due to the impact of coal mining activity. Deep groundwater is significantly less affected by evaporation and human activity, which is recharged by archaic groundwater. There are recharge and discharge between reservoir water, river water, soil water, and shallow groundwater. NO₃⁻ is the main N species in the study area, and forty-six percent of NO₃⁻-N concentrations exceed the drinking water standard of China (NO₃⁻-N ≤ 10 mg/L content). Nitrification is the main forming process of NO₃⁻. Denitrification is also found in river water of some river branches. The sources of NO₃⁻ are mainly controlled by land use type along the riverbank. NO₃⁻ of river water in the upper reaches are come from nitrogen in precipitation and soil organic N. River water in the lower reaches is polluted by a mixture of soil organic N and fertilizers.
Afficher plus [+] Moins [-]Formation mechanism of secondary organic aerosol from ozonolysis of gasoline vehicle exhaust Texte intégral
2018
Yang, Bo | Ma, Pengkun | Shu, Jinian | Zhang, Peng | Huang, Jingyun | Zhang, Haixu
Gasoline vehicles are a major source of anthropogenic secondary organic aerosols (SOAs). However, current models based on known precursors fail to explain the substantial SOAs from vehicle emissions due to the inadequate understanding of the formation mechanism. To provide more information on this issue, the formation of SOAs from ozonolysis of four light-duty gasoline vehicle exhaust systems was investigated with a vacuum ultraviolet photoionization mass spectrometer (VUV-PIMS). Remarkable SOAs formation was observed and the SOAs were primarily aliphatic alkenes. PI mass spectra of the SOAs from all vehicles exhibited similar spectral patterns (a regular mass group with m/z at 98, 112, 126 …). Interestingly, most carbonyl products of aliphatic alkenes observed as major gaseous products have specific molecular weights, and the main formation pathway of SOAs can be explained well using aldol condensation reactions of these carbonyls. This is a direct observation of the aldol condensation as a dominated pathway for SOAs formation, and the first report on the composition and formation mechanism of the SOAs from the ozonolysis of gasoline vehicle exhaust is given. The study reveals that low molecular weight alkenes may play a more significant role in vehicle-induced SOAs formation than previously believed. More importantly, the PI mass spectra of SOAs from vehicles show similarities to the field aerosol sample mass spectra, suggesting the possible significance of the aldol condensation reactions in ambient aerosol formation. Since carbonyls are a major degradation product of biogenic and anthropogenic VOCs through atmospheric oxidation processes, the mechanism proposed in this study can be applied more generally to explain aerosol formation from the oxidation of atmospheric hydrocarbons.
Afficher plus [+] Moins [-]Exposure to acrylamide induces cardiac developmental toxicity in zebrafish during cardiogenesis Texte intégral
2018
Huang, Mengmeng | Jiao, Jingjing | Wang, Jun | Xia, Zhidan | Zhang, Yu
Acrylamide (AA), an environmental pollutant, has been linked to neurotoxicity, genotoxicity and carcinogenicity. AA is widely used to synthesize polymers for industrial applications, is widely found in Western-style carbohydrate-rich foods and cigarette smoke, and can also be detected in human umbilical cord blood and breast milk. This is the first study that demonstrated the cardiac developmental toxicity of AA in zebrafish embryos. Post-fertilization exposure to AA caused a clearly deficient cardiovascular system with a shrunken heart and abortive morphogenesis and function. Disordered expression of the cardiac genes, myl7, vmhc, myh6, bmp4, tbx2b and notch1b, as well as reduced number of myocardial cells and endocardial cells, indicated the collapsed development of ventricle and atrium and failed differentiation of atrioventricular canal (AVC). Although cell apoptosis was not affected, the capacity of cardiomyocyte proliferation was significantly reduced by AA exposure after fertilization. Further investigation showed that treatment with AA specifically reduced the expressions of nkx2.5, myl7 and vmhc in the anterior lateral plate mesoderm (ALPM) during the early cardiogenesis. In addition, AA exposure disturbed the restricted expressions of bmp4, tbx2b and notch1b during atrioventricular (AV) valve development and cardiac chambers maturation. Our results showed that AA-induced cardiotoxicity was related to decreased cardiac progenitor genes expression, reduced myocardium growth, abnormal cardiac chambers morphogenesis and disordered AVC differentiation. Our study demonstrates that AA exposure during a time point analogous to the first trimester in humans has a detrimental effect on early heart development in zebrafish. A high ingestion rate of AA-containing products may be an underlying risk factor for cardiogenesis in fetuses.
Afficher plus [+] Moins [-]Epigallocatechin-3-gallate attenuates microcystin-LR-induced apoptosis in human umbilical vein endothelial cells through activation of the NRF2/HO-1 pathway Texte intégral
2018
Shi, Jun | Zhang, Min | Zhang, Libin | Deng, Huipin
Our previous study showed that the tea extract, epigallocatechin-3-gallate (EGCG), protects against microcystin-LR (MC-LR) -mediated apoptosis of human umbilical vein endothelial cells (HUVECs); however, the mechanism underlying MC-LR-induced HUVEC apoptosis remains incompletely understood. In this study, we investigated whether the nuclear factor erythroid-like 2 (NRF2)/heme oxygenase-1 (HO-1) pathway, which regulates antioxidant transcriptional regulation of oxidative stress and apoptosis, is involved in this process. Mitochondrial membrane potential (MMP) and caspase-3/-9 activities were evaluated in HUVECs by JC-1 staining and colorimetric activity assay, and a DCFH-DA fluorescent probe assay was used to quantitate reactive oxygen species (ROS) generation. The effects of MC-LR, EGCG, NF2, and HO-1 on HUVEC apoptosis were explored by western blotting and small interfering RNA (siRNA) analyses. MC-LR treatment downregulated HUVEC mitochondrial membrane potential, and decreased levels of cytochrome c release and activated caspase-3/-9, ROS generation, consequently inducing HUVEC apoptosis. EGCG treatment attenuated MC-LR-mediated HUVEC oxidative stress and mitochondria-related apoptosis. EGCG induced NRF2/HO-1 expression and activation in MC-LR treated HUVECs, while downregulation of NRF2/HO-1 by specific siRNAs revealed that NRF2/HO-1 signaling was involved in EGCG attenuation of MC-LR-induced HUVEC apoptosis. Our findings indicate that EGCG treatment protects against MC-LR-mediated HUVEC apoptosis via activation of NRF2/HO-1 signaling.
Afficher plus [+] Moins [-]Ambient air pollution and daily hospital admissions: A nationwide study in 218 Chinese cities Texte intégral
2018
Tian, Yaohua | Liu, Hui | Liang, Tianlang | Xiang, Xiao | Li, Man | Juan, Juan | Song, Jing | Cao, Yaying | Wang, Xiaowen | Chen, Libo | Wei, Chen | Gao, Pei | Hu, Yonghua
There have been few large multicity studies to evaluate the acute health effects of ambient air pollution on morbidity risk in developing counties. In this study, we examined the short-term associations of air pollution with daily hospital admissions in China. We conducted a nationwide time-series study in 218 Chinese cities between 2014 and 2016. Data on daily hospital admissions counts were obtained from the National Health Insurance Database for Urban Employees covering 0.28 billion enrollees. We used generalized additive model with Poisson regression to estimate the associations in each city, and we performed random-effects meta-analysis to pool the city-specific estimates. More than 60 million hospital admissions were analyzed in this study. At the national-average level, each 10 μg/m³ increase in PM₁₀, SO₂, and NO₂, and 1 mg/m³ increase in CO at lag 0 day was associated with a 0.29% (95% CI, 0.23%–0.36%), 1.16% (95% CI, 0.92%–1.40%), 1.68% (95% CI, 1.40%–1.95%), and 2.59% (95% CI, 1.69%–3.50%) higher daily hospital admissions, respectively. The associations of air pollution with hospital admissions remained statistically significant at levels below the current Chinese Ambient Air Quality Standards. The effect estimates were larger in cities with lower air pollutants levels or higher air temperatures and relative humidity, as well as in the elderly. In conclusion, our findings provide robust evidence of increased hospital admissions in association with short-term exposure to ambient air pollution in China.
Afficher plus [+] Moins [-]Nitric oxide alleviates wheat yield reduction by protecting photosynthetic system from oxidation of ozone pollution Texte intégral
2018
Li, Caihong | Song, Yanjie | Guo, Liyue | Gu, Xian | Muminov, Mahmud A. | Wang, Tianzuo
Accelerated industrialization has been increasing releases of chemical precursors of ozone. Ozone concentration has risen nowadays, and it's predicted that this trend will continue in the next few decades. The yield of many ozone-sensitive crops suffers seriously from ozone pollution, and there are abundant reports exploring the damage mechanisms of ozone to these crops, such as winter wheat. However, little is known on how to alleviate these negative impacts to increase grain production under elevated ozone. Nitric oxide, as a bioactive gaseous, mediates a variety of physiological processes and plays a central role in response to biotic and abiotic stresses. In the present study, the accumulation of endogenous nitric oxide in wheat leaves was found to increase in response to ozone. To study the functions of nitric oxide, its precursor sodium nitroprusside was spayed to wheat leaves under ozone pollution. Wheat leaves spayed with sodium nitroprusside accumulated less hydrogen peroxide, malondialdehyde and electrolyte leakage under ozone pollution, which can be accounted for by the higher activities of superoxide dismutase and peroxidase than in leaves treated without sodium nitroprusside. Consequently, net photosynthetic rate of wheat treated using sodium nitroprusside was much higher, and yield reduction was alleviated under ozone fumigation. These findings are important for our understanding of the potential roles of nitric oxide in responses of crops in general and wheat in particular to ozone pollution, and provide a viable method to mitigate the detrimental effects on crop production induced by ozone pollution, which is valuable for keeping food security worldwide.
Afficher plus [+] Moins [-]Selective binding behavior of humic acid removal by aluminum coagulation Texte intégral
2018
Jin, Pengkang | Song, Jina | Yang, Lei | Jin, Xin | Wang, Xiaochang C.
The reactivity characteristics of humic acid (HA) with aluminium coagulants at different pH values was investigated. It revealed that the linear complexation reaction occurred between aluminum and humic acid at pH < 7, and the reaction rate increased as the pH increased from 2 to 6. While at pH = 7, most of the dosed aluminum existed in the form of free aluminum and remained unreacted in the presence of HA until the concentration reached to trigger Al(OH)₃₍ₛ₎ formation. Differentiating the change of functional groups of HA by ¹H nuclear magnetic resonance spectroscopy and X-ray photoelectron spectra analysis, it elucidated that there was a selective complexation between HA and Al with lower Al dosage at pH 5, which was probably due to coordination of the activated functional groups onto aluminium. While almost all components were removed proportionally by sweep adsorption without selectivity at pH 7, as well as that with higher Al dosage at pH 5. This study provided a promising pathway to analyse the mechanism of the interaction between HA and metal coagulants in future.
Afficher plus [+] Moins [-]Embryonic exposure to benzo(a)pyrene inhibits reproductive capability in adult female zebrafish and correlation with DNA methylation Texte intégral
2018
Gao, Dongxu | Lin, Jing | Ou, Kunlin | Chen, Ying | Li, Hongbin | Dai, Qinhua | Yu, Zhenni | Zuo, Zhenghong | Wang, Chonggang
This study was conducted to investigate the effects of embryonic short-term exposure to benzo(a)pyrene (BaP), a model polycyclic aromatic hydrocarbon, on ovarian development and reproductive capability in adult female zebrafish. In 1-year-old fish after embryonic exposure to BaP for 96 h, the gonadosomatic indices and the percentage of mature oocytes were significantly decreased in the 0.5, 5 and 50 nmol/L treatments. The spawned egg number, the fertilization rate and the hatching success were significantly reduced, while the malformation rate of the F1 unexposed larvae were increased. The mRNA levels of follicle-stimulating hormone, luteinizing hormone, ovarian cytochrome P450 aromatase cyp19a1a and cyp19b, estrogen receptor esr1 and esr2, and hepatic vitellogenin vtg1 and vtg2 genes, were down-regulated in adult female zebrafish that were exposed to BaP during embryonic stage. Both 17β-estradiol and testosterone levels were reduced in the ovary of adult females. The methylation levels of the gonadotropin releasing hormone (GnRH) gene gnrh3 were significantly increased in the adult zebrafish brain, and those of the GnRH receptor gene gnrhr3 were elevated both in the larvae exposed to BaP and in the adult brain, which might cause the down-regulation of the mRNA levels of gnrh3 and gnrhr3. This epigenetic change caused by embryonic exposure to BaP might be a reason for physiological changes along the brain–pituitary–gonad axis. These results suggest that short-term exposure in early life should be included and evaluated in any risk assessment of pollutant exposure to the reproductive health of fish.
Afficher plus [+] Moins [-]Glyphosate has limited short-term effects on commensal bacterial community composition in the gut environment due to sufficient aromatic amino acid levels Texte intégral
2018
Nielsen, Lene Nørby | Roager, Henrik M. | Casas, Mònica Escolà | Frandsen, Henrik L. | Gosewinkel, Ulrich | Bester, Kai | Licht, Tine Rask | Hendriksen, Niels Bohse | Bahl, Martin Iain
Recently, concerns have been raised that residues of glyphosate-based herbicides may interfere with the homeostasis of the intestinal bacterial community and thereby affect the health of humans or animals. The biochemical pathway for aromatic amino acid synthesis (Shikimate pathway), which is specifically inhibited by glyphosate, is shared by plants and numerous bacterial species. Several in vitro studies have shown that various groups of intestinal bacteria may be differently affected by glyphosate. Here, we present results from an animal exposure trial combining deep 16S rRNA gene sequencing of the bacterial community with liquid chromatography mass spectrometry (LC-MS) based metabolic profiling of aromatic amino acids and their downstream metabolites. We found that glyphosate as well as the commercial formulation Glyfonova®450 PLUS administered at up to fifty times the established European Acceptable Daily Intake (ADI = 0.5 mg/kg body weight) had very limited effects on bacterial community composition in Sprague Dawley rats during a two-week exposure trial. The effect of glyphosate on prototrophic bacterial growth was highly dependent on the availability of aromatic amino acids, suggesting that the observed limited effect on bacterial composition was due to the presence of sufficient amounts of aromatic amino acids in the intestinal environment. A strong correlation was observed between intestinal concentrations of glyphosate and intestinal pH, which may partly be explained by an observed reduction in acetic acid produced by the gut bacteria. We conclude that sufficient intestinal levels of aromatic amino acids provided by the diet alleviates the need for bacterial synthesis of aromatic amino acids and thus prevents an antimicrobial effect of glyphosate in vivo. It is however possible that the situation is different in cases of human malnutrition or in production animals.
Afficher plus [+] Moins [-]Field-realistic exposure to the androgenic endocrine disruptor 17β-trenbolone alters ecologically important behaviours in female fish across multiple contexts Texte intégral
2018
Bertram, Michael G. | Saaristo, Minna | Martin, Jake M. | Ecker, Tiarne E. | Michelangeli, Marcus | Johnstone, Christopher P. | Wong, Bob B.M.
The capacity of pharmaceutical pollution to alter behaviour in wildlife is of increasing environmental concern. A major pathway of these pollutants into the environment is the treatment of livestock with hormonal growth promotants (HGPs), which are highly potent veterinary pharmaceuticals that enter aquatic ecosystems via effluent runoff. Hormonal growth promotants are designed to exert biological effects at low doses, can act on physiological pathways that are evolutionarily conserved across taxa, and have been detected in ecosystems worldwide. However, despite being shown to alter key fitness-related processes (e.g., development, reproduction) in various non-target species, relatively little is known about the potential for HGPs to alter ecologically important behaviours, especially across multiple contexts. Here, we investigated the effects of exposure to a field-realistic level of the androgenic HGP metabolite 17β-trenbolone—an endocrine-disrupting chemical that has repeatedly been detected in freshwater systems—on a suite of ecologically important behaviours in wild-caught female eastern mosquitofish (Gambusia holbrooki). First, we found that 17β-trenbolone-exposed fish were more active and exploratory in a novel environment (i.e., maze arena), while boldness (i.e., refuge use) was not significantly affected. Second, when tested for sociability, exposed fish spent less time in close proximity to a shoal of stimulus (i.e., unexposed) conspecific females and were, again, found to be more active. Third, when assayed for foraging behaviour, exposed fish were faster to reach a foraging zone containing prey items (chironomid larvae), quicker to commence feeding, spent more time foraging, and consumed a greater number of prey items, although the effect of exposure on certain foraging behaviours was dependent on fish size. Taken together, these findings highlight the potential for exposure to sub-lethal levels of veterinary pharmaceuticals to alter sensitive behavioural processes in wildlife across multiple contexts, with potential ecological and evolutionary implications for exposed populations.
Afficher plus [+] Moins [-]