Affiner votre recherche
Résultats 811-820 de 7,921
Nitrogen flows associated with food production and consumption system of Shanghai
2021
Liao, Chengsong | Xia, Yuling | Wu, Dianming
The release of reactive nitrogen (Nᵣ) from food production and consumption constitute the primary source of nitrogen pollution. However, nitrogen flows and the driving factors of food chain of Shanghai, China have not been previously studied. Here, we used a substance flow analysis model to analyze the changes in Nᵣ inputs and outputs in agricultural production, livestock and poultry farming, and food consumption related to the Shanghai food chain between 2000 and 2018. The driving forces of Nᵣ inputs, Nᵣ use efficiency, and Nᵣ surpluses/deficits in the food production and consumption system were also investigated. The results indicated that the main sources of Nᵣ input in the food production and consumption system were nitrogen fertilizers, livestock and poultry feed from external sources, and plant-based foods, which accounted for 36.28–59.45% of Nᵣ input in agricultural production, 37.32–76.57% of Nᵣ input in livestock and poultry farming, and 35.38–59.37% of Nᵣ input in food consumption, respectively. The main forms of Nᵣ outputs were surplus nitrogen in the soil, excretal nitrogen from livestock and poultry animals, and excretal nitrogen from humans, which accounted for 38.2–48.89% of Nᵣ output in agricultural production, 36.78–55.18% of Nᵣ output in livestock and poultry farming, and 85.36% of Nᵣ output in food consumption, respectively. From 2000 to 2018, the Nᵣ inputs per unit area from agricultural production decreased at a rate of 20.42% before 2012, and then increased at a rate of 5.72%. Moreover, the Nᵣ use efficiency of agricultural production component of Shanghai was at a low level, only 18.43–27.6%. Cultivation area of crops was the main driving forces of the Nᵣ input to food production and consumption system. These results provide essential data for controlling nitrogen pollution caused by Shanghai food production and consumption, which can serve as a reference for administrative agencies in formulating policies.
Afficher plus [+] Moins [-]Polycyclic aromatic hydrocarbons in sedimentary cores of Tibetan Plateau: Influence of global warming on cold trapping
2021
Wang, An-Ting | Li, Jun | Wang, Qi | Fang, Bin | Yuan, Guo-Li | Duan, Xu-Chuan
Cold condensation is an important pathway for polycyclic aromatic hydrocarbons (PAHs) depositing at remote alpine lakes after long-range atmospheric transportation. However, in the context of global warming, the obvious temperature rise in the Tibetan Plateau (TP) might have an impact on the air deposition of PAHs by controlling the extent of cold condensation. To investigate the influence of rising temperatures on the atmospheric deposition of PAHs, two dated sedimentary cores from Pumoyum Co Lake (PC) and Selin Co Lake (SC) were collected, respectively and concentrations of 16 individual PAHs were measured. In both PC and SC, the total concentration of 16 PAHs presented relatively lower levels in four historical periods of “hot anomaly” including 1973–1975, 1988–1989, 1998–1999, and 2006–2007. This indicated that the hot temperatures might restrict the atmospheric deposition of PAHs. Besides, the results of the principal component analysis did discriminate those “hot anomalies”. As the temperature kept increasing in TP, for low molecular weight PAHs and high molecular weight PAHs, the influence of rising temperatures on the cold condensation was different. Therefore, it was identified that the effect of global warming on the environmental fate of POPs cannot be neglected, especially in alpine regions like TP.
Afficher plus [+] Moins [-]Life cycle sustainability assessment of the nanoscale zero-valent iron synthesis process for application in contaminated site remediation
2021
Visentin, Caroline | Trentin, Adan William da Silva | Braun, Adeli Beatriz | Thomé, Antônio
Nanoscale zero-valent iron (nZVI) is the main nanomaterial used in environmental remediation processes. The present study aims to evaluate the life cycle sustainability of nZVI production methods applied in environmental remediation. Three production methods of nZVI were selected for analysis: milling, liquid reduction with sodium borohydride, and chemical reduction with hydrogen gas (in two approaches: considering the goethite and hematite synthesis and after using in nZVI production and, using goethite and hematite particles already synthesized for nZVI production). The life cycle sustainability assessment was carried out based on a multi-criteria and multi-attribute analysis. The multi-criteria analysis was used to determine impact category preferences of different specialists in sustainability and remediation, and calculate the sustainability score through a linear additive model. Finally, a Monte Carlo simulation was used to quantify the results uncertainty. The functional unit considered was 1.00 kg of nZVI produced. The milling method and the hydrogen gas method in approach considering the use goethite and hematite particles already synthesized were the most sustainable. Moreover, the sustainability index was found to be influenced by the considered location scenarios as well as the perspectives of the different specialists, which was essential in producing a more accurate and comprehensive evaluation of the aforementioned sustainability methods. Overall, this study significantly contributed to applications of the state-of-the-art life cycle sustainability assessment in studies regarding nanomaterials, employing a simple methodology that included an analysis of different specialists. In addition, this is the first article that uses life cycle sustainability assessment in nanomaterials.
Afficher plus [+] Moins [-]Occurrence of Raphidiopsis raciborskii blooms in cool waters: Synergistic effects of nitrogen availability and ecotypes with adaptation to low temperature
2021
Jia, Nannan | Wang, Yilang | Guan, Yuying | Chen, Youxin | Li, Renhui | Yu, Gongliang
Raphidiopsis raciborskii is a diazotrophic and potentially toxic cyanobacterium. To date, this species has successfully invaded many regions from the tropics to sub-tropical and temperate regions, typically forming blooms at temperatures greater than 25 °C. However, there have been a few cases in which R. raciborskii blooms have occurred at low temperatures (below 15 °C), but its cause and mechanisms remain unclear. In this study, field investigations revealed that R. raciborskii blooms occurred at 10–15 °C in Lake Xihu, Yunnan, China. The biomass of R. raciborskii was found to be positively related to nitrate concentrations in this lake. Three strains of R. raciborskii, two isolated from Lake Xihu (CHAB 6611 and CHAB 6612) and one from Lushui Reservoir in central China (CHAB 3409), were used for growth experiments at 15 °C. The three strains exhibited genotypic (16S rRNA and ITS-L genes) and physiological differences in response to nitrogen concentrations at low temperature. The growth rates of strains CHAB 6611 and CHAB 6612 increased with nitrogen concentration while CHAB 3409 could not grow at 15 °C. Furthermore, the growth and phenotypic responses of CHAB 6611 and CHAB 6612 to nitrogen concentrations were different, despite the closer genetic relationship shared by these two strains. Thus, increased nitrogen concentration in water may enhance the biological availability and utilization of nitrogen by R. raciborskii, which is the external promoter, leading to improving the resistance of R. raciborskii to low temperature. The internal cause is the presence of ecotypes in R. raciborskii populations with adaptation to low temperature. With increasing global eutrophication, the distribution range of R. raciborskii as well as the scale of its blooms will increase. As such, the risk of exposure of aquatic biota and humans to cylindrospermopsin is also expected to increase.
Afficher plus [+] Moins [-]Environmental exposure to 17β-trenbolone during adolescence inhibits social interaction in male mice
2021
Zhang, Shaozhi | Jiao, Zihao | Zhao, Xin | Sun, Mingzhu | Feng, Xizeng
Puberty is a critical period for growth and development. This period is sensitive to external stimuli, which ultimately affects the development of nerves and the formation of social behaviour. 17β-Trenbolone (17β-TBOH) is an endocrine disrupting chemicals (EDCs), which had been widely reported in aquatic vertebrates. But there is little known about the effects of 17β-TBOH on mammals, especially on adolescent neurodevelopment. In this study, we found that 17β-TBOH acute 1 h exposure can cause the activation of the dopamine circuit in pubertal male balb/c mice. At present, there is little known about the effects of puberty exposure of endocrine disruptors on these neurons/nerve pathways. Through a series of behavioural tests, exposure to 80 μgkg⁻¹ d⁻¹ of 17β-TBOH during adolescence increased the anxiety-like behaviour of mice and reduced the control of wheel-running behaviour and the response of social interaction behaviour. The results of TH immunofluorescence staining showed that exposure to 17β-TBOH reduced dopamine axon growth in the medial prefrontal cortex (mPFC). In addition, the results of real-time PCR showed that exposure to 17β-TBOH not only down-regulated the expression of dopamine axon development genes, but also affected the balance of excitatory/inhibitory signals in mPFC. In this research, we reveal the effects of 17β-TBOH exposure during adolescence on mammalian behaviour and neurodevelopment, and provide a reference for studying the origin of adolescent diseases.
Afficher plus [+] Moins [-]Low abundance of microplastics in commercially caught fish across southern Australia
2021
Wootton, Nina | Reis-Santos, Patrick | Dowsett, Natalie | Turnbull, Alison | Gillanders, Bronwyn M.
Plastic pollution has increased significantly in the past decades and is now a major global environmental issue. Plastic objects enter the ocean and are broken down into smaller pieces, while wastewater and runoff also carry microplastics (plastics <5 mm) into the ocean. Plastic has been found in over 700 different species of marine wildlife but little research has examined fish sold for human consumption. We determined the microplastic abundance in nine commercially important, wild-caught fish species purchased from seafood markets across 4000 km of Australia (Western Australia, South Australia, Victoria, Tasmania, New South Wales). For microplastic quantification, fish gastro-intestinal tracts were chemically digested and the amount and type of microplastic identified under a microscope and Fourier transform infrared spectrometer. Across all states, an average of 35.5% of fish samples had at least one piece of microplastic in their gastro-intestinal tract. South Australia had the highest percentage of fish with plastic (49%) and Tasmania the lowest (20%). The average microplastic load was 0.94 piece per fish but ranged from 0 to 17 pieces, with polyolefin identified as the dominant polymer group. Overall, the ingestion of microplastic was widespread across species, locations, diets and habitat niches of fish species investigated, but the average plastic ingestion was less than other similar global studies. This study provides novel insights on the use of fish species from seafood markets to assess environmental contamination by microplastic, as well as an important perspective of the potential for microplastic contamination to enter the human food chain.
Afficher plus [+] Moins [-]Wintertime chemical characteristics of aerosol and their role in light extinction during clear and polluted days in rural Indo Gangetic plain
2021
Izhar, Saifi | Gupta, Tarun | Qadri, Adnan Mateen | Panday, Arnico K.
This paper reports the chemical and light extinction characteristics of fine aerosol (PM₂.₅) during the winter period (2017–18) at Lumbini, Nepal, a rural site on the Indo Gangetic Plains. A modified IMPROVE algorithm was employed to reconstruct light extinction by chemical constituents of aerosol. The fine aerosol levels impacted visibility adversely during daytime, but during nighttime visibility was controlled by fog droplets rather than by aerosols. The PM₂.₅ chemical constituents showed varying characteristics during clear and polluted days. The average NO₃⁻/SO₄²⁻ concentration ratio was 0.57 during clear and 1.36 and polluted days, signifying a change in secondary inorganics and formation processes mainly due to decreasing photochemical production and due to increased partitioning of nitrate particles at a lower temperature. The increased secondary organics contribution and the higher OM/OC ratio (2.2) during polluted days showed the vital role of aqueous processing and biomass burning emissions in determining the concentration of organics. Total light extinction was 2.3 times higher on polluted days compared to clear days, while the PM₂.₅ mass concentration was 1.5 times higher. This variation in mass and extinction order signifies that various chemical components in fine particles have a more considerable impact on light extinction. On clear days we found that carbonaceous particles (OM and EC) made a major contribution to light extinction. In contrast, the extinction contribution by secondary inorganic (especially NH₄NO₃) increased significantly during polluted days, with hygroscopic growth and enhanced scattering efficiency at higher RH conditions playing a major role. The comparison between clear and polluted days altogether suggests that regulating the nitrate sources can help significantly in improving the visibility levels and restrict fog haze development during wintertime in rural IGP.
Afficher plus [+] Moins [-]Ecological consequences of space rocket accidents in Kazakhstan between 1999 and 2018
2021
Koroleva, T.V. | Semenkov, I.N. | Sharapova, A.V. | Krechetov, P.P. | Lednev, S.A.
In this paper, we briefly described the ecological consequences of six space rocket accidents launched from the Baikonur Cosmodrome between 1999 and 2018 and focused on an assessment of efficiency of soil remediation following the accidental crash of launch vehicle Proton-M on July 2, 2013, which resulted in the severest environmental impact in the modern Russian space industry. On the day after the accident, the content of carcinogenic unsymmetrical dimethylhydrazine and nitrosodimethylamine, as well as nitrate in soils of the crash site exceeded their maximal permissible concentrations by 8900, 6100 and 85 times, respectively. Mitigation measures included soil detoxication by a solution of 10% H₂O₂ and 1% iron complexonate, soil excavation and ploughing. Two years later (in April 2015), both unsymmetrical dimethylhydrazine and nitrosodimethylamine concentrations were below 0.05 mg/kg and nitrate concentration did not exceed 3.9 g/kg. As compared to background sites, soils of the crash site had significantly (P-value<0.05) lower values of pH and the content of total organic carbon, basicity from soda and carbonates and higher total nitrogen and soluble salt contents. Soil microbial communities were the most vulnerable component of the disturbed arid ecosystems, as their suppressed condition was indicated by a low biochemical oxygen demand and a very low cellulase activity.
Afficher plus [+] Moins [-]Contrasting sources and fate of nitrogen compounds in different groundwater systems in the Central Yangtze River Basin
2021
Xiong, Yaojin | Du, Yao | Deng, Yamin | Ma, Teng | Li, Dian | Sun, Xiaoliang | Liu, Guangning | Wang, Yanxin
Although groundwater nitrogen pollution has been widely studied, the control of hydrogeological conditions on behavior of nitrogen compounds has been poorly understood. In this study, multiple stable isotopes (N/C/H/O), spectral characteristics of DOM coupled with water chemistry were used to reveal the sources and fate of nitrate and ammonium in three subareas with different hydrogeological conditions in the Central Yangtze River Basin. We identified three contrasting patterns of nitrogen sources and fate in groundwater controlled by different aquifer features. In a reducing porous aquifer mainly composed of carbonate minerals overlain by a thick low-permeability layer, the NH₄–N concentration is high (mean 4.12 mg/L) but with quite low NO₃–N concentration (mean 0.28 mg/L). The high ammonium is mainly from intense degradation of organic matter (OM), while denitrification at a higher rate results in nitrate removal. Feammox may be favored owing to abundant humics acting as the electron shuttle. In a weakly reducing to oxidizing porous aquifer mainly composed of aluminosilicate minerals overlain by a varying thickness of low-permeability layer, high ammonium occurs in a weakly reducing condition and is affected by both anthropogenic input and OM degradation, while high nitrate occurs in a more oxidizing condition and could be mainly from soil nitrogen, manure or sewage. Feammox may be also favored due to more acidic environment formed by weathering of aluminosilicate minerals, fluctuating redox condition and low abundance of labile organic carbon, while denitrification occurs at a slower rate coupled with concurrent re-oxidation of nitrite to nitrate. In an oxidizing porous - fissured aquifer system overlain by a thin low-permeability layer, the concentrations of ammonium and nitrate are both low, possibly due to strong hydrodynamic and flushing condition, although slightly higher concentration of nitrate exhibit similar sources and fate with the weakly reducing to oxidizing porous aquifer mentioned above.
Afficher plus [+] Moins [-]Volatile organic compound (VOC) emissions and health risk assessment in paint and coatings industry in the Yangtze River Delta, China
2021
Mo, Ziwei | Lü, Sihua | Shao, Min
Solvent use and paint consumption are significant source sectors of volatile organic compounds (VOCs) emissions in China. The occupational painters have high risk of health effect due to exposure to high VOCs concentration. However, the toxic components in coating environment have not been carefully identified, and the health risks of VOCs exposure have not been sufficiently assessed. This study collected air samples from nine workshops of three major coating sectors in the Yangtze River Delta of China, namely cargo container coating, ship equipment coating, and furniture coating, to evaluate the non-cancer and cancer risk of toxic VOCs exposure to occupational painters under a normal working condition. The results show that the container coating had highest cancer risk (2.29 × 10⁻⁶–5.53 × 10⁻⁶) exceeding the safe limit of 1.0 × 10⁻⁶, while non-cancer risk of all workshops was lower than acceptable level of 1. Ethylbenzene and 1,2-dichloropropane should be targeted for priority removal during the container coating process in attempt to reduce adverse health effect on the occupational painters. This study helps better understand the health risk of VOCs exposure in coating workshops in China and provides information for policy-makers to formulate possible control of specific toxic compounds during coating process.
Afficher plus [+] Moins [-]