Affiner votre recherche
Résultats 821-830 de 8,011
Streptomyces pactum and sulfur mediated the rhizosphere microhabitats of potherb mustard after a phytoextraction trial Texte intégral
2021
Guo, Di | Ali, Amjad | Zhang, Zengqiang
To explore the performance of Streptomyces pactum (Act12) alone (A) and jointly with sulfur (SA) in the phytoextraction practice of potentially toxic elements (PTEs) (Cd and Zn), as well as their effects on soil chemical properties and microbial community composition, this paper selected potherb mustard (Brassica juncea, Coss.) as the test plant to assess the feedback of soil-plant ecosystems. Metal uptake values in lone Act12 treatments were higher than that of Act12 + sulfur treatments, and showed dose dependent with Act12 due to the higher biomass production. According to the biochemical analyses of rhizosphere soils, Act12 inoculation significantly increased urease (20.4%) and dehydrogenase (58.5%) while reducing alkaline phosphatase (68.0%) activity. The production of soil organic acids was, in descending order, formic acid > oxalic acid > malic acid > propionic acid and indicated a stimulated variation under treatments (SA > A > control). High-throughput sequencing revealed that bacterial community compositions were consistent in both phylum and genus taxonomies, while the final overall proportions were modified. The populations of the predominant phyla Proteobacteria and Bacteroidetes increased after sulfur application. The contribution of Act12 to the relative abundance of microbiota was minor compared to sulfur. Based on a redundancy analysis, soil chemical properties are the drivers of microbial activities and the main contributor to plant growth. Our results suggested Act12 inoculation may be part of an effective strategy enhancing phytoremediation of PTE-contaminated soils through chemical and biotic processes, and provided important implications for sustainable land utilization and crop production.
Afficher plus [+] Moins [-]Application of cadmium prediction models for rice and maize in the safe utilization of farmland associated with tin mining in Hezhou, Guangxi, China Texte intégral
2021
Yang, Yeyu | Li, Cheng | Yang, Zhongfang | Yu, Tao | Jiang, Hongyu | Han, Min | Liu, Xu | Wang, Jue | Zhang, Qizuan
Cadmium (Cd) contamination in soil and crops caused by mining activities has become a prevalent concern in the world. Given that different crops have varying Cd bioaccumulation factors, crops with low Cd bioaccumulation abilities can be selected for the safe usage of Cd -contaminated lands. This study aimed to investigate Cd contamination in soil and crops and the influencing factors of soil Cd activity in a tin mining area (TMA) and control area (CA) and to put forward suggestions for the safe usage of farmlands by developing prediction models of Cd content in different crop grains. We collected 72 and 40 pairs of rice and maize grain samples, respectively, along with their rhizosphere soil samples and 6176 topsoil samples. The results showed that compared with the CA, the Cd pollution was more severe in the cultivated soil and crop grains around TMA. Furthermore, rice has a strong ability to transport Cd from soil to grains, whereas maize has a poor Cd uptake ability. The total organic carbon, CaO, pH, and Mn in soil play key roles in the transfer of Cd from soil to crop grains. Using these parameters and Cd concentration in soil, two sets of accurate Cd prediction models were developed for maize and rice. Based on the Cd concentration in the topsoil and predicted Cd concentration in crop grains, the safe utilization scheme of farmland was proposed. The proportions of priority protection, safe exploitation, planting adjustment, and strict control were 72.59%, 22.77%, 3.16%, and 1.48% in the TMA, respectively. The values reached 80.51% (priority protection), 19.12% (safe exploitation), 0.37% (planting adjustment), and 0% (strict control) in the CA. Thus, given the difference between Cd accumulation in rice and maize, adjustment of planting crops in contaminated farmlands can be applied to maximize the use of farmland resources.
Afficher plus [+] Moins [-]Distribution of antibiotics in water, sediments and biofilm in an urban river (Córdoba, Argentina, LA) Texte intégral
2021
Valdés, M Eugenia | Santos, Lúcia H.M.L.M. | Rodríguez Castro, M Carolina | Giorgi, Adonis | Barceló, Damià | Rodríguez-Mozaz, Sara | Amé, M Valeria
Distribution of antibiotics in water, sediments and biofilm in an urban river (Córdoba, Argentina, LA) Texte intégral
2021
Valdés, M Eugenia | Santos, Lúcia H.M.L.M. | Rodríguez Castro, M Carolina | Giorgi, Adonis | Barceló, Damià | Rodríguez-Mozaz, Sara | Amé, M Valeria
In this study, we evaluated the distribution of up to forty-three antibiotics and 4 metabolites residues in different environmental compartments of an urban river receiving both diffuse and point sources of pollution. This is the first study to assess the fate of different antibiotic families in water, biofilms and sediments simultaneously under a real urban river scenario. Solid phase extraction, bead-beating disruption and pressurized liquid extraction were applied for sample preparation of water, biofilm and sediment respectively, followed by the quantification of target antibiotics by UPLC-ESI-MS/MS. Twelve antibiotics belonging to eight chemical families were detected in Suquía River samples (67% positive samples). Sites downstream the WWTP discharge were the most polluted ones. Concentrations of positive samples ranged 0.003-0.29 µg L⁻¹ in water (max. cephalexin), 2-652 µg kg⁻¹d.w. in biofilm (max. ciprofloxacin) and 2-34 µg kg⁻¹d.w. in sediment (max. ofloxacin). Fluoroquinolones, macrolides and trimethoprim were the most frequently detected antibiotics in the three compartments. However cephalexin was the prevalent antibiotic in water. Antibiotics exhibited preference for their accumulation from water into biofilms rather than in sediments (bioaccumulation factors > 1,000 L kg⁻¹d.w. in biofilms, while pseudo-partition coefficients in sediments < 1,000 L kg⁻¹d.w.). Downstream the WWTP there was an association of antibiotics levels in biofilms with ash-free dry weight, opposite to chlorophyll-a (indicative of heterotrophic communities). Cephalexin and clarithromycin in river water were found to pose high risk for the aquatic ecosystem, while ciprofloxacin presented high risk for development of antimicrobial resistance. This study contributes to the understanding of the fate and distribution of antibiotic pollution in urban rivers, reveals biofilm accumulation as an important environmental fate, and calls for attention to government authorities to manage identified highly risk antibiotics.
Afficher plus [+] Moins [-]Distribution of antibiotics in water, sediments and biofilm in an urban river (Córdoba, Argentina, LA) Texte intégral
2021
Valdés, M. Eugenia | Santos, Lúcia H. M. L. M. | Rodríguez Castro, M. Carolina | Giorgi, Adonis | Barceló, Damià | Rodríguez-Mozaz, Sara | Amé, María V. | Ministerio de Ciencia, Innovación y Universidades (España) | Barceló, Damià [0000-0002-8873-0491] | Consejo Superior de Investigaciones Científicas [https://ror.org/02gfc7t72]
In this study, we evaluated the distribution of up to forty-three antibiotics and 4 metabolites residues in different environmental compartments of an urban river receiving both diffuse and point sources of pollution. This is the first study to assess the fate of different antibiotic families in water, biofilms and sediments simultaneously under a real urban river scenario. Solid phase extraction, bead-beating disruption and pressurized liquid extraction were applied for sample preparation of water, biofilm and sediment respectively, followed by the quantification of target antibiotics by UPLC-ESI-MS/MS. Twelve antibiotics belonging to eight chemical families were detected in Suquía River samples (67% positive samples). Sites downstream the WWTP discharge were the most polluted ones. Concentrations of positive samples ranged 0.003-0.29 µg L-1 in water (max. cephalexin), 2-652 µg kg-1d.w. in biofilm (max. ciprofloxacin) and 2-34 µg kg-1d.w. in sediment (max. ofloxacin). Fluoroquinolones, macrolides and trimethoprim were the most frequently detected antibiotics in the three compartments. However cephalexin was the prevalent antibiotic in water. Antibiotics exhibited preference for their accumulation from water into biofilms rather than in sediments (bioaccumulation factors > 1,000 L kg-1d.w. in biofilms, while pseudo-partition coefficients in sediments < 1,000 L kg-1d.w.). Downstream the WWTP there was an association of antibiotics levels in biofilms with ash-free dry weight, opposite to chlorophyll-a (indicative of heterotrophic communities). Cephalexin and clarithromycin in river water were found to pose high risk for the aquatic ecosystem, while ciprofloxacin presented high risk for development of antimicrobial resistance. This study contributes to the understanding of the fate and distribution of antibiotic pollution in urban rivers, reveals biofilm accumulation as an important environmental fate, and calls for attention to government authorities to manage identified highly risk antibiotics. | This study has been co-financed by the European Union through the European Regional Development Fund (FEDER), by the Agencia Nacional de Promoción Científica y Técnica (FONCyT/PICT-2015-01784) and the International Atomic Energy Agency (CRP: D52039, CN:18849). It has also been partly supported by the Generalitat de Catalunya (Consolidated Research Group: Catalan Institute for Water Research 2014 SGR 291). Lúcia H.M.L.M. Santos thanks the Juan de la Cierva program (IJCI-2017-32747) and Sara Rodríguez-Mozaz thanks the Ramon y Cajal program (RYC-2014-16707) from the Spanish State Research Agency of the Spanish Ministry of Science, Innovation and Universities (AEI-MCIU). ICRA researchers thank funding from CERCA program.Argentinean authors would also like to thank CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas-Argentina) and Sci-Hub for useful access to knowledge. | Peer reviewed
Afficher plus [+] Moins [-]Disruptive effects of chlorpyrifos on predator-prey interactions of Ceratophrys ornata tadpoles: Consequences at the population level using computational modeling Texte intégral
2021
Salgado Costa, Carolina | Rimoldi, Federico | Pantucci Saralegui, Morena J. | Rubio Puzzo, M Leticia | Trudeau, Vance L. | Natale, Guillermo S.
Disruptive effects of chlorpyrifos on predator-prey interactions of Ceratophrys ornata tadpoles: Consequences at the population level using computational modeling Texte intégral
2021
Salgado Costa, Carolina | Rimoldi, Federico | Pantucci Saralegui, Morena J. | Rubio Puzzo, M Leticia | Trudeau, Vance L. | Natale, Guillermo S.
Large-scale ecotoxicological studies have technical and ethical limitations, both related to the need to expose large numbers of individuals to potentially harmful compounds. The computational modeling is a complementary useful and predictive tool that overcomes these limitations. Considering the increasing interest in the effects of pesticides on behavioral traits, the aim of this study was to evaluate the effects of chlorpyrifos (CPF) on intra- and inter-specific interactions of anuran tadpoles, complementing traditional ecotoxicological tools with a theoretical analysis verified by computational simulations. Experiments were developed under two consecutive phases: a first phase of exposure (treated and control group), and a second phase of interactions. The second phase consisted of evaluating the effects of CPF on intra- and inter-specific interactions of exposed C. ornata (Co) tadpoles acting as predators and unexposed Rhinella fernandezae (Rf) tadpoles acting as prey (Experiment I), under different predator-prey proportions (0/10 = 0Co–10Rf, 2/8, 4/6, 6/4, 8/2, 10/0). Also, intraspecific interactions of three Co tadpoles under different conditions of exposure were evaluated (Experiment II: 3 exposed Co, 2 exposed Co/1 non-exposed, 1 exposed Co/2 non-exposed). During the exposure phase, chlorpyrifos induced significant mortality from 48 h (48 h: p < 0.05, 72 h–96 h: p < 0.001), irregular swimming, tail flexure, and the presence of subcutaneous air. Also, it induced effects on the sounds emitted after 96 h of exposure, registering a smaller number of pulses and higher dominant frequencies, and altered intra- and inter-specific interactions. During the interaction phase, the larvae continued to show sound effects, however, the antipredator mechanism continued to be operating and efficient. Finally, it was possible to model the behavior of the larvae under the effects of chlorpyrifos. We conclude that experimental data and computational modeling matched. Therefore, computational simulation is a valuable ecotoxicological tool that provides new information and allows prediction of natural processes.
Afficher plus [+] Moins [-]Disruptive effects of chlorpyrifos on predator-prey interactions of Ceratophrys ornata tadpoles: Consequences at the population level using computational modeling Texte intégral
2021
Salgado Costa, Carolina | Rimoldi, Federico | Pantucci, Morena Johana | Rubio Puzzo, Maria Leticia | Trudeau, Vance L. | Natale, Guillermo Sebastian
Large-scale ecotoxicological studies have technical and ethical limitations, both related to the need to expose large numbers of individuals to potentially harmful compounds. The computational modeling is a complementary useful and predictive tool that overcomes these limitations. Considering the increasing interest in the effects of pesticides on behavioral traits, the aim of this study was to evaluate the effects of chlorpyrifos (CPF) on intra- and inter-specific interactions of anuran tadpoles, complementing traditional ecotoxicological tools with a theoretical analysis verified by computational simulations. Experiments were developed under two consecutive phases: a first phase of exposure (treated and control group), and a second phase of interactions. The second phase consisted of evaluating the effects of CPF on intra- and inter-specific interactions of exposed C. ornata (Co) tadpoles acting as predators and unexposed Rhinella fernandezae (Rf) tadpoles acting as prey (Experiment I), under different predator-prey proportions (0/10 = 0Co–10Rf, 2/8, 4/6, 6/4, 8/2, 10/0). Also, intraspecific interactions of three Co tadpoles under different conditions of exposure were evaluated (Experiment II: 3 exposed Co, 2 exposed Co/1 non-exposed, 1 exposed Co/2 non-exposed). During the exposure phase, chlorpyrifos induced significant mortality from 48 h (48 h: p < 0.05, 72 h–96 h: p < 0.001), irregular swimming, tail flexure, and the presence of subcutaneous air. Also, it induced effects on the sounds emitted after 96 h of exposure, registering a smaller number of pulses and higher dominant frequencies, and altered intra- and inter-specific interactions. During the interaction phase, the larvae continued to show sound effects, however, the antipredator mechanism continued to be operating and efficient. Finally, it was possible to model the behavior of the larvae under the effects of chlorpyrifos. We conclude that experimental data and computational modeling matched. Therefore, computational simulation is a valuable ecotoxicological tool that provides new information and allows prediction of natural processes. | Fil: Salgado Costa, Carolina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Centro de Investigaciones del Medio Ambiente - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigaciones del Medio Ambiente; Argentina | Fil: Rimoldi, Federico. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Centro de Investigaciones del Medio Ambiente - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigaciones del Medio Ambiente; Argentina | Fil: Pantucci, Morena Johana. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Centro de Investigaciones del Medio Ambiente - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigaciones del Medio Ambiente; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Limnología "Dr. Raúl A. Ringuelet". Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Instituto de Limnología; Argentina | Fil: Rubio Puzzo, Maria Leticia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; Argentina | Fil: Trudeau, Vance L.. University of Ottawa; Canadá | Fil: Natale, Guillermo Sebastian. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Centro de Investigaciones del Medio Ambiente - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigaciones del Medio Ambiente; Argentina
Afficher plus [+] Moins [-]Rapid temporal decline of mercury in Greenland halibut (Reinhardtius hippoglossoides) Texte intégral
2021
Bank, Michael S. | Frantzen, Sylvia | Duinker, Arne | Amouroux, David | Tessier, Emmanuel | Nedreaas, Kjell | Maage, Amund | Nilsen, Bente M.
Rapid temporal decline of mercury in Greenland halibut (Reinhardtius hippoglossoides) Texte intégral
2021
Bank, Michael S. | Frantzen, Sylvia | Duinker, Arne | Amouroux, David | Tessier, Emmanuel | Nedreaas, Kjell | Maage, Amund | Nilsen, Bente M.
Mercury (Hg) pollution in the ocean is an issue of global concern, however bioaccumulation regimes of this ubiquitous pollutant in marine apex predators have important knowledge gaps. Our fish length and stable isotope (δ¹⁵N and δ¹³C) normalized data of Greenland halibut (GH) (Reinhardtius hippoglossoides) showed that Hg bioaccumulation in fillet tissue decreased by ~35–50 %, over a ten-year period from 2006 to 2015 (n = 7 individual sampling years). Hg was predominantly in the methylmercury form (>77 %). Results from a Bayesian information theoretic model showed that GH Hg concentrations decreased with time and its associated declines in Hg air emissions, estimated trophic position, and a potentially lower degree of demersal prey use as indicated by temporal trend shifts in nitrogen (δ¹⁵N) and carbon (δ¹³C) stable isotope values. GH trophic shifts accounted for about one third of the observed temporal reduction in Hg. Our study demonstrates the importance of simultaneously considering Hg emissions, food web dynamics and trophic shifts as important drivers of Hg bioaccumulation in a marine, deep water fish species and highlights the effectiveness of Hg regulations on ocean apex predator Hg concentrations and overall seafood safety.
Afficher plus [+] Moins [-]Rapid temporal decline of mercury in Greenland halibut (Reinhardtius hippoglossoides) Texte intégral
2021
Bank, Michael | Frantzen, Sylvia | Duinker, Arne | Amouroux, David | Tessier, Emmanuel | Nedreaas, Kjell | Måge, Amund | Nilsen, Bente Merete
Mercury (Hg) pollution in the ocean is an issue of global concern, however bioaccumulation regimes of this ubiquitous pollutant in marine apex predators have important knowledge gaps. Our fish length and stable isotope (δ15N and δ13C) normalized data of Greenland halibut (GH) (Reinhardtius hippoglossoides) showed that Hg bioaccumulation in fillet tissue decreased by ~35–50 %, over a ten-year period from 2006 to 2015 (n = 7 individual sampling years). Hg was predominantly in the methylmercury form (>77 %). Results from a Bayesian information theoretic model showed that GH Hg concentrations decreased with time and its associated declines in Hg air emissions, estimated trophic position, and a potentially lower degree of demersal prey use as indicated by temporal trend shifts in nitrogen (δ15N) and carbon (δ13C) stable isotope values. GH trophic shifts accounted for about one third of the observed temporal reduction in Hg. Our study demonstrates the importance of simultaneously considering Hg emissions, food web dynamics and trophic shifts as important drivers of Hg bioaccumulation in a marine, deep water fish species and highlights the effectiveness of Hg regulations on ocean apex predator Hg concentrations and overall seafood safety. | publishedVersion
Afficher plus [+] Moins [-]Agricultural activities compromise ecosystem health and functioning of rivers: Insights from multivariate and multimetric analyses of macroinvertebrate assemblages Texte intégral
2021
Zhang, You | Leung, Jonathan Y.S. | Zhang, Ying | Cai, Yongjiu | Zhang, Zhiming | Li, Kuanyi
Agricultural activities compromise ecosystem health and functioning of rivers: Insights from multivariate and multimetric analyses of macroinvertebrate assemblages Texte intégral
2021
Zhang, You | Leung, Jonathan Y.S. | Zhang, Ying | Cai, Yongjiu | Zhang, Zhiming | Li, Kuanyi
Agricultural activities often lead to nutrient enrichment and habitat modification in rivers, possibly altering macroinvertebrate assemblages and hence ecosystem functioning. For the sake of environmental management and conservation, therefore, assessing the impacts of agricultural activities becomes indispensable, especially when these activities are predicted to be intensified in the future. In this study, the plain river network in the Lake Chaohu Basin was chosen to examine how agricultural activities influence the functioning of rivers by assessing land use, water quality, habitat condition and macroinvertebrate assemblages, followed by calculating the macroinvertebrate-based multimetric index (MMI) to indicate overall ecosystem health of the rivers. We found that agricultural activities lowered the diversity of macroinvertebrates (e.g. total number of taxa and Simpson index) primarily due to elevated ammonium concentrations in water and reduced microhabitat types, thereby impairing the habitat integrity and nutrient cycling of rivers. The macroinvertebrate-based MMI was positively correlated with increasing habitat quality but negatively with increasing nutrient concentrations, suggesting its high reliability for indicating the impacts of agricultural activities, which was further substantiated by classification and regression tree (CART) analysis. We recommend analyzing macroinvertebrate assemblages using both multivariate and multimetric approaches to offer a more comprehensive evaluation of the impacts of agricultural activities on ecosystem health. Some environmental (CODMₙ, NH₄⁺-N and PO₄³⁻-P) and biological parameters (total number of taxa), however, can be used as good proxies for MMI, when time and resources for gathering information to develop MMI are limited.
Afficher plus [+] Moins [-]Agricultural activities compromise ecosystem health and functioning of rivers: Insights from multivariate and multimetric analyses of macroinvertebrate assemblages Texte intégral
2021
Zhang, Y. | Leung, J.Y.S. | Zhang, Y. | Cai, Y. | Zhang, Z. | Li, K.
Available online 4 February 2021 | Abstract not available. | You Zhang, Jonathan Y.S. Leung, Ying Zhang, Yongjiu Cai, Zhiming Zhang, Kuanyi Li
Afficher plus [+] Moins [-]Microplastic fibres from synthetic textiles: Environmental degradation and additive chemical content Texte intégral
2021
Sait, Shannen T.L. | Sørensen, Lisbet | Kubowicz, Stephan | Vike-Jonas, Kristine | Gonzalez, Susana V. | Asimakopoulos, Alexandros G. | Booth, Andy M.
Microplastic fibres from synthetic textiles: Environmental degradation and additive chemical content Texte intégral
2021
Sait, Shannen T.L. | Sørensen, Lisbet | Kubowicz, Stephan | Vike-Jonas, Kristine | Gonzalez, Susana V. | Asimakopoulos, Alexandros G. | Booth, Andy M.
Microplastic fibres (MPFs) often make up the largest fraction of microplastic pollution in aquatic environments, yet little is known about their degradative fate and persistence. This study investigates the environmentally relevant photodegradation of common MPFs: polyester (PET), polyamide (PA) and polyacrylonitrile (PAN), their respective additive chemical profile, together with their potential for additive leaching. MPFs were subject to ultraviolet (UV) exposure in seawater and freshwater media over 10 months. PET and PA MPFs showed significant fragmentation and surface changes following UV exposure, additionally PA showed evidence of chemical changes. PAN did not undergo significant photodegradation in the same exposure period. Chemicals tentatively identified in MPFs and aqueous leachates via non-target gas chromatography-mass spectrometry include monomers, UV stabilisers and degradation products. Characterisation of several bisphenols (BPs) and benzophenones (BzPs) was performed via ultraperformance liquid chromatography tandem mass spectrometry. Bisphenol A, bisphenol S and benzophenone-3 were quantified in all MPFs and wool at concentrations between 4.3 and 501 ng/g, with wool displaying the highest sum concentration of BPs and BzPs at 863 and 27 ng/g, respectively.
Afficher plus [+] Moins [-]Microplastic fibres from synthetic textiles: Environmental degradation and additive chemical content Texte intégral
2021
Sait, Shannen | Sørensen, Lisbet | Kubowicz, Stephan | Vike-Jonas, Kristine | Villa Gonzales, Susana | Asimakopoulos, Alexandros | Booth, Andy
Microplastic fibres (MPFs) often make up the largest fraction of microplastic pollution in aquatic environments, yet little is known about their degradative fate and persistence. This study investigates the environmentally relevant photodegradation of common MPFs: polyester (PET), polyamide (PA) and polyacrylonitrile (PAN), their respective additive chemical profile, together with their potential for additive leaching. MPFs were subject to ultraviolet (UV) exposure in seawater and freshwater media over 10 months. PET and PA MPFs showed significant fragmentation and surface changes following UV exposure, additionally PA showed evidence of chemical changes. PAN did not undergo significant photodegradation in the same exposure period. Chemicals tentatively identified in MPFs and aqueous leachates via non-target gas chromatography-mass spectrometry include monomers, UV stabilisers and degradation products. Characterisation of several bisphenols (BPs) and benzophenones (BzPs) was performed via ultraperformance liquid chromatography tandem mass spectrometry. Bisphenol A, bisphenol S and benzophenone-3 were quantified in all MPFs and wool at concentrations between 4.3 - 501 ng/g, with wool displaying the highest sum concentration of BPs and BzPs at 863 and 27 ng/g, respectively. | publishedVersion
Afficher plus [+] Moins [-]Spatio-temporal changes of road traffic noise pollution at ecoregional scale Texte intégral
2021
Iglesias-Merchan, Carlos | Laborda-Somolinos, Rafael | González-Ávila, Sergio | Elena-Rosselló, Ramón
Spatio-temporal changes of road traffic noise pollution at ecoregional scale Texte intégral
2021
Iglesias-Merchan, Carlos | Laborda-Somolinos, Rafael | González-Ávila, Sergio | Elena-Rosselló, Ramón
Noise pollution is a pervasive factor that increasingly threatens natural resources and human health worldwide. In particular, large-scale changes in road networks have driven shifts in the acoustic environment of rural landscapes during the past few decades. Using sampling plots from the Spanish Landscape Monitoring System (SISPARES), 16 km² each, we modelled the spatio-temporal changes in road traffic noise pollution in Ecoregion 1 of Spain (approximately 66,000 km²). We selected a study period that was characterised by significant changes in the size of the road network and the vehicle fleet (i.e. between 1995 and 2014) and used standard and validated acoustic computation methods for environmental noise modelling (i.e. European Directive, 2002/49/EC) within sampling plots. We then applied a multiple linear regression to expand noise modelling throughout the whole of Ecoregion 1. Our results showed that the noise level increased by 1.7 dB(A) in average per decade in approximately 65% of the territory, decreased by 1.3 dB(A) per decade in about 33%, and remained unchanged in 2%. This suggests that road traffic noise pollution levels may not grow homogeneously in large geographical areas, maybe due to the concentration of large fast traffic flows on modern motorways connecting towns. Our research exemplifies how landscape monitoring systems such as cost-effective approaches may play an important role when assessing spatio-temporal patterns and the impact of anthropogenic noise pollution at large geographical scales, and even more so in a global context of constricted resources and limited availability of historical data on traffic and environmental noise monitoring.
Afficher plus [+] Moins [-]Spatio-temporal changes of road traffic noise pollution at ecoregional scale Texte intégral
2021
Iglesias Merchán, Carlos | Laborda Somolinos, Rafael | Gonzalez Avila, Sergio | Elena Rosselló, Ramon
Noise pollution is a pervasive factor that increasingly threatens natural resources and human health worldwide. In particular, large-scale changes in road networks have driven shifts in the acoustic environment of rural landscapes during the past few decades. Using sampling plots from the Spanish Landscape Monitoring System (SISPARES), 16 km2 each, we modelled the spatio-temporal changes in road traffic noise pollution in Ecoregion 1 of Spain (approximately 66,000 km2). We selected a study period that was characterised by significant changes in the size of the road network and the vehicle fleet (i.e. between 1995 and 2014) and used standard and validated acoustic computation methods for environmental noise modelling (i.e. European Directive, 2002/49/EC) within sampling plots. We then applied a multiple linear regression to expand noise modelling throughout the whole of Ecoregion 1. Our results showed that the noise level increased by 1.7 dB(A) in average per decade in approximately 65% of the territory, decreased by 1.3 dB(A) per decade in about 33%, and remained unchanged in 2%. This suggests that road traffic noise pollution levels may not grow homogeneously in large geographical areas, maybe due to the concentration of large fast traffic flows on modern motorways connecting towns. Our research exemplifies how landscape monitoring systems such as cost-effective approaches may play an important role when assessing spatio-temporal patterns and the impact of anthropogenic noise pollution at large geographical scales, and even more so in a global context of constricted resources and limited availability of historical data on traffic and environmental noise monitoring.
Afficher plus [+] Moins [-]The environmental risks of pharmaceuticals beyond traditional toxic effects: Chemical differences that can repel or entrap aquatic organisms Texte intégral
2021
Jacob, Raquel Sampaio | Araújo, Cristiano V.M. | Santos, Lucilaine Valéria de Souza | Moreira, Victor Rezende | Lebron, Yuri Abner Rocha | Lange, Liséte Celina
The environmental risks of pharmaceuticals beyond traditional toxic effects: Chemical differences that can repel or entrap aquatic organisms Texte intégral
2021
Jacob, Raquel Sampaio | Araújo, Cristiano V.M. | Santos, Lucilaine Valéria de Souza | Moreira, Victor Rezende | Lebron, Yuri Abner Rocha | Lange, Liséte Celina
The aim of the present study was to assess the risks of four different pharmaceutical active compounds (PhACs; diazepam, metformin, omeprazole and simvastatin). Acute and chronic toxicities were studied using the bacterium Aliivibrio fischeri and the microalgae Pseudokirchneriella subcapitata; while the repellency and attractiveness were assessed by avoidance tests with juvenile Cypirinus carpio using a multi-compartmented exposure system. Omeprazole was found to be an acutely toxic drug (EC₅₀: 0.015 mg/L), while the other PhACs, except simvastatin, showed some chronic toxicity. Regarding avoidance, simvastatin and omeprazole induced an escape response for 50% of the fish population at 0.032 and 0.144 mg/L, respectively; contrarily, diazepam was attractive, even at lethal concentrations, representing a dangerous trap for organisms. The toxicity of the PhACs seemed not to be directly related to their repellency; and the mode of action seems to determine the repellency or attractiveness of the chemicals. Contamination by PhACs is of concern due to the environmental disturbance they might cause, either due to their acute and chronic toxicity (at the individual level), repellency (at the ecosystem level: loss of local biodiversity) or attraction to potentially lethal levels.
Afficher plus [+] Moins [-]The environmental risks of pharmaceuticals beyond traditional toxic effects: Chemical differences that can repel or entrap aquatic organisms Texte intégral
2021
Sampaio Jacob, Raquel | Araújo, Cristiano V. M. | Santos, Lucilaine Valéria Souza de | Rezende Moreira, Victor | Rocha Lebron, Yuri Abner | Lamge, Liséte Celina | Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (Brasil) | Conselho Nacional das Fundaçôes Estaduais de Amparo à Pesquisa (Brasil) | Fundação de Amparo à Pesquisa do Estado de São Paulo Minas Gerais | Universidade Federal de Minas Gerais | Ministerio de Ciencia, Innovación y Universidades (España) | Agencia Estatal de Investigación (España) | Consejo Superior de Investigaciones Científicas [https://ror.org/02gfc7t72]
The aim of the present study was to assess the risks of four different pharmaceutical active compounds (PhACs; diazepam, metformin, omeprazole and simvastatin). Acute and chronic toxicities were studied using the bacterium Aliivibrio fischeri and the microalgae Pseudokirchneriella subcapitata; while the repellency and attractiveness were assessed by avoidance tests with juvenile Cypirinus carpio using a multi-compartmented exposure system. Omeprazole was found to be an acutely toxic drug (EC50: 0.015 mg/L), while the other PhACs, except simvastatin, showed some chronic toxicity. Regarding avoidance, simvastatin and omeprazole induced an escape response for 50% of the fish population at 0.032 and 0.144 mg/L, respectively; contrarily, diazepam was attractive, even at lethal concentrations, representing a dangerous trap for organisms. The toxicity of the PhACs seemed not to be directly related to their repellency; and the mode of action seems to determine the repellency or attractiveness of the chemicals. Contamination by PhACs is of concern due to the environmental disturbance they might cause, either due to their acute and chronic toxicity (at the individual level), repellency (at the ecosystem level: loss of local biodiversity) or attraction to potentially lethal levels. | This research was funded by: Coordination of Superior Level Staff Improvement (CAPES); National Council for Scientific and Technological Development (CNPq); Foundation for Research Support of the State of Minas Gerais (FAPEMIG) and the Federal University of Minas Gerais (UFMG). C.V.M. Araújo received the Ramón y Cajal contract (RYC-2017-22324) from the Spanish Ministry of Science and Innovation. | Peer reviewed
Afficher plus [+] Moins [-]Bio-activation of soil with beneficial microbes after soil fumigation reduces soil-borne pathogens and increases tomato yield Texte intégral
2021
Cheng, Hongyan | Zhang, Daqi | Ren, Lirui | Song, Zhaoxin | Li, Qingjie | Wu, Jiajia | Fang, Wensheng | Huang, Bin | Yan, Dongdong | Li, Yuan | Wang, Qiuxia | Cao, Aocheng
Bio-activation of soil with beneficial microbes after soil fumigation reduces soil-borne pathogens and increases tomato yield Texte intégral
2021
Cheng, Hongyan | Zhang, Daqi | Ren, Lirui | Song, Zhaoxin | Li, Qingjie | Wu, Jiajia | Fang, Wensheng | Huang, Bin | Yan, Dongdong | Li, Yuan | Wang, Qiuxia | Cao, Aocheng
Soil-borne diseases have become increasingly problematic for farmers producing crops intensively under protected agriculture. Although soil fumigants are convenient and effective for minimizing the impact of soil-borne disease, they are most often detrimental to beneficial soil microorganisms. Previous research showed that bio-activation of soil using biological control agents present in biofertilizers or organic fertilizers offered promise as a strategy for controlling soil-borne pathogens when the soil was bio-activated after fumigation. Our research sought to determine how bio-activation can selectively inhibit pathogens while promoting the recovery of beneficial microbes. We monitored changes in the soil’s physicochemical properties, its microbial community and reductions in soil-borne pathogens. We found that the population density of Fusarium and Phytophthora were significantly reduced and tomato yield was significantly increased when the soil was bio-activated. Soil pH and soil catalase activity were significantly increased, and the soil’s microbial community structure was changed, which may have enhanced the soil’s ability to reduce Fusarium and Phytophthora. Our results showed that soil microbial diversity and relative abundance of beneficial microorganisms (such as Sphingomonas, Bacillus, Mortierella and Trichoderma) increased shortly after bio-activation of the soil, and were significantly and positively correlated with pathogen suppression. The reduction in pathogens may have been due to a combination of fumigation-fertilizer that reduced pathogens directly, or the indirect effect of an optimized soil microbiome that improved the soil’s non-biological factors (such as soil pH, fertility structure), enhanced the soil’s functional properties and increased tomato yield.
Afficher plus [+] Moins [-]Bio-activation of soil with beneficial microbes after soil fumigation reduces soil-borne pathogens and increases tomato yield. Texte intégral
2021
Cheng, Hongyan | Zhang, Daqi | Ren, Lirui | Song, Zhaoxin | Li, Qingjie | Wu, Jiajia | Fang, Wensheng | Huang, Bin | Yan, Dongdong | Li, Yuan | Wang, Qiuxia | Cao, Aocheng
peer reviewed | Soil-borne diseases have become increasingly problematic for farmers producing crops intensively under protected agriculture. Although soil fumigants are convenient and effective for minimizing the impact of soil-borne disease, they are most often detrimental to beneficial soil microorganisms. Previous research showed that bio-activation of soil using biological control agents present in biofertilizers or organic fertilizers offered promise as a strategy for controlling soil-borne pathogens when the soil was bio-activated after fumigation. Our research sought to determine how bio-activation can selectively inhibit pathogens while promoting the recovery of beneficial microbes. We monitored changes in the soil's physicochemical properties, its microbial community and reductions in soil-borne pathogens. We found that the population density of Fusarium and Phytophthora were significantly reduced and tomato yield was significantly increased when the soil was bio-activated. Soil pH and soil catalase activity were significantly increased, and the soil's microbial community structure was changed, which may have enhanced the soil's ability to reduce Fusarium and Phytophthora. Our results showed that soil microbial diversity and relative abundance of beneficial microorganisms (such as Sphingomonas, Bacillus, Mortierella and Trichoderma) increased shortly after bio-activation of the soil, and were significantly and positively correlated with pathogen suppression. The reduction in pathogens may have been due to a combination of fumigation-fertilizer that reduced pathogens directly, or the indirect effect of an optimized soil microbiome that improved the soil's non-biological factors (such as soil pH, fertility structure), enhanced the soil's functional properties and increased tomato yield.
Afficher plus [+] Moins [-]