Affiner votre recherche
Résultats 831-840 de 4,309
Genetic and epigenetic alterations in normal and sensitive COPD-diseased human bronchial epithelial cells repeatedly exposed to air pollution-derived PM2.5 Texte intégral
2017
Leclercq, B. | Platel, A. | Antherieu, S. | Alleman, L.Y. | Hardy, E.M. | Perdrix, E. | Grova, N. | Riffault, V. | Appenzeller, B.M. | Happillon, M. | Nesslany, F. | Coddeville, P. | Lo-Guidice, J-M. | Garçon, G.
Even though clinical, epidemiological and toxicological studies have progressively provided a better knowledge of the underlying mechanisms by which air pollution-derived particulate matter (PM) exerts its harmful health effects, further in vitro studies on relevant cell systems are still needed. Hence, aiming of getting closer to the human in vivo conditions, primary human bronchial epithelial cells derived from normal subjects (NHBE) or sensitive chronic obstructive pulmonary disease (COPD)-diseased patients (DHBE) were differentiated at the air-liquid interface. Thereafter, they were repeatedly exposed to air pollution-derived PM2.5 to study the occurrence of some relevant genetic and/or epigenetic endpoints. Concentration-, exposure- and season-dependent increases of OH-B[a]P metabolites in NHBE, and to a lesser extent, COPD-DHBE cells were reported; however, there were more tetra-OH-B[a]P and 8-OHdG DNA adducts in COPD-DHBE cells. No increase in primary DNA strand break nor chromosomal aberration was observed in repeatedly exposed cells. Telomere length and telomerase activity were modified in a concentration- and exposure-dependent manner in NHBE and particularly COPD-DHBE cells. There were a global DNA hypomethylation, a P16 gene promoter hypermethylation, and a decreasing DNA methyltransferase activity in NHBE and notably COPD-DHBE cells repeatedly exposed. Changes in site-specific methylation, acetylation, and phosphorylation of histone H3 (i.e., H3K4me3, H3K9ac, H3K27ac, and H3S10ph) and related enzyme activities occurred in a concentration- and exposure-dependent manner in all the repeatedly exposed cells. Collectively, these results highlighted the key role played by genetic and even epigenetic events in NHBE and particularly sensitive COPD-DHBE cells repeatedly exposed to air pollution-derived PM2.5 and their different responsiveness. While these specific epigenetic changes have been already described in COPD and even lung cancer phenotypes, our findings supported that, together with genetic events, these epigenetic events could dramatically contribute to the shift from healthy to diseased phenotypes following repeated exposure to relatively low doses of air pollution-derived PM2.5.
Afficher plus [+] Moins [-]Diversity and hydrocarbon-degrading potential of epiphytic microbial communities on Platanus x acerifolia leaves in an urban area Texte intégral
2017
Gandolfi, Isabella | Canedoli, Claudia | Imperato, Valeria | Tagliaferri, Ilario | Gkorezis, Panagiotis | Vangronsveld, Jaco | Padoa Schioppa, Emilio | Papacchini, Maddalena | Bestetti, Giuseppina | Franzetti, Andrea
Plants and their associated bacteria have been suggested to play a role in air pollution mitigation, especially in urban areas. Particularly, epiphytic bacteria might be able to degrade atmospheric hydrocarbons. However, phyllospheric bacterial communities are highly variable depending on several factors, e.g. tree species, leaf age and physiology, environmental conditions. In this work, bacterial communities hosted by urban Platanus x acerifolia leaves were taxonomically characterized using high throughput sequencing of 16S rRNA gene, and their temporal and spatial variability was assessed by comparing samples collected from different locations in the city of Milan (Italy) and in different months. The diversity of alkane hydroxylase (alkB) phylotypes harboured by phyllospheric bacteria associated to urban Platanus trees was also evaluated. Results revealed that temporal changes, which are related to seasonality, acted as a stronger driver both on Platanus phyllospheric community structure and on alkB phylotype diversity than sampling location. Biodiversity of bacterial communities decreased along the growing season, leading to a strong dominance by the genus Stenotrophomonas. On the contrary, diversity of hydrocarbon-degrading populations increased over the months, although it resulted lower than that reported for other habitats. It was therefore hypothesized that atmospheric hydrocarbons might play a key role in the selection of phyllospheric populations in urban areas.
Afficher plus [+] Moins [-]Widespread detection of a brominated flame retardant, hexabromocyclododecane, in expanded polystyrene marine debris and microplastics from South Korea and the Asia-Pacific coastal region Texte intégral
2017
Jang, Mi | Shim, Won Joon | Han, Gi Myung | Rani, Manviri | Song, Young Kyoung | Hong, Sang Hee
The role of marine plastic debris and microplastics as a carrier of hazardous chemicals in the marine environment is an emerging issue. This study investigated expanded polystyrene (EPS, commonly known as styrofoam) debris, which is a common marine debris item worldwide, and its additive chemical, hexabromocyclododecane (HBCD). To obtain a better understanding of chemical dispersion via EPS pollution in the marine environment, intensive monitoring of HBCD levels in EPS debris and microplastics was conducted in South Korea, where EPS is the predominant marine debris originate mainly from fishing and aquaculture buoys. At the same time, EPS debris were collected from 12 other countries in the Asia-Pacific region, and HBCD concentrations were measured. HBCD was detected extensively in EPS buoy debris and EPS microplastics stranded along the Korean coasts, which might be related to the detection of a quantity of HBCD in non-flame-retardant EPS bead (raw material). The wide detection of the flame retardant in sea-floating buoys, and the recycling of high-HBCD-containing EPS waste inside large buoys highlight the need for proper guidelines for the production and use of EPS raw materials, and the recycling of EPS waste. HBCD was also abundantly detected in EPS debris collected from the Asia-Pacific coastal region, indicating that HBCD contamination via EPS debris is a common environmental issue worldwide. Suspected tsunami debris from Alaskan beaches indicated that EPS debris has the potential for long-range transport in the ocean, accompanying the movement of hazardous chemicals. The results of this study indicate that EPS debris can be a source of HBCD in marine environments and marine food web.
Afficher plus [+] Moins [-]Rare earth elements and hypertension risk among housewives: A pilot study in Shanxi Province, China Texte intégral
2017
Wang, Bin | Yan, Lailai | Huo, Wenhua | Lu, Qun | Cheng, Zixi | Zhang, Jingxu | Li, Zhiwen
Studies have shown that residents living near rare earth mining areas have high concentrations of rare earth elements (REEs) in their hair. However, the adverse effects of REEs on human health have rarely been the focus of epidemiological studies. The goal of this study was to evaluate the relationship between REEs in hair and the risk of hypertension in housewives. We recruited 398 housewives in Shanxi Province, China, consisting of 163 women with hypertension (cases) and 235 healthy women without hypertension (controls). We analyzed 15 REEs (lanthanum (La), samarium (Sm), europium (Eu), gadolinium (Gd), terbium (Tb), dysprosium (Dy), holmium (Ho), erbium (Er), thulium (Tm), ytterbium (Yb), lutetium (Lu), Yttrium (Y), cerium (Ce), praseodymium (Pr), and neodymium (Nd)) and calcium (Ca) accumulated in housewives hair over a period of two years. The results revealed that, with the exception of Eu, concentrations of the REEs in hair were higher in the cases than in the controls. The univariate odds ratios (ORs) of the 14 REEs were >1, and four of the REEs (Dy, Tm, Yb, and Y) also had adjusted ORs > 1. The increasing dose-response trends of the four REEs further indicated the potential for increased hypertension risk. Moreover, the REEs were negatively correlated with Ca content in hair. These results might suggest an antagonistic effect of REEs on Ca in the human body. It was concluded that high intake of REEs might increase the risk of hypertension among housewives.
Afficher plus [+] Moins [-]Microbial community structure and activity in trace element-contaminated soils phytomanaged by Gentle Remediation Options (GRO) Texte intégral
2017
Touceda-González, M. | Prieto-Fernández, Á | Renella, G. | Giagnoni, L. | Sessitsch, A. | Brader, G. | Kumpiene, J. | Dimitriou, I. | Eriksson, J. | Friesl-Hanl, W. | Galazka, R. | Janssen, J. | Mench, M. | Müller, I. | Neu, S. | Puschenreiter, M. | Siebielec, G. | Vangronsveld, J. | Kidd, P.S.
Microbial community structure and activity in trace element-contaminated soils phytomanaged by Gentle Remediation Options (GRO) Texte intégral
2017
Touceda-González, M. | Prieto-Fernández, Á | Renella, G. | Giagnoni, L. | Sessitsch, A. | Brader, G. | Kumpiene, J. | Dimitriou, I. | Eriksson, J. | Friesl-Hanl, W. | Galazka, R. | Janssen, J. | Mench, M. | Müller, I. | Neu, S. | Puschenreiter, M. | Siebielec, G. | Vangronsveld, J. | Kidd, P.S.
Gentle remediation options (GRO) are based on the combined use of plants, associated microorganisms and soil amendments, which can potentially restore soil functions and quality. We studied the effects of three GRO (aided-phytostabilisation, in situ stabilisation and phytoexclusion, and aided-phytoextraction) on the soil microbial biomass and respiration, the activities of hydrolase enzymes involved in the biogeochemical cycles of C, N, P, and S, and bacterial community structure of trace element contaminated soils (TECS) from six field trials across Europe. Community structure was studied using denaturing gradient gel electrophoresis (DGGE) fingerprinting of Bacteria, α- and β-Proteobacteria, Actinobacteria and Streptomycetaceae, and sequencing of DGGE bands characteristic of specific treatments. The number of copies of genes involved in ammonia oxidation and denitrification were determined by qPCR.Phytomanagement increased soil microbial biomass at three sites and respiration at the Biogeco site (France). Enzyme activities were consistently higher in treated soils compared to untreated soils at the Biogeco site. At this site, microbial biomass increased from 696 to 2352 mg ATP kg⁻¹ soil, respiration increased from 7.4 to 40.1 mg C-CO2 kg⁻¹ soil d⁻¹, and enzyme activities were 2–11-fold higher in treated soils compared to untreated soil. Phytomanagement induced shifts in the bacterial community structure at both, the total community and functional group levels, and generally increased the number of copies of genes involved in the N cycle (nirK, nirS, nosZ, and amoA). The influence of the main soil physico-chemical properties and trace element availability were assessed and eventual site-specific effects elucidated. Overall, our results demonstrate that phytomanagement of TECS influences soil biological activity in the long term.
Afficher plus [+] Moins [-]Microbial community structure and activity in trace element-contaminated soils phytomanaged by Gentle Remediation Options (GRO) Texte intégral
2017
Touceda-González, M. | Renella, G. | Giagnoni, L. | Sessitsch, A. | Brader, G. | Kumpiene, J. | Dimitriou, I. | Eriksson, J. | Friesl-Hanl, W. | Galazka, R. | Janssen, J. | Mench, Michel | Muller, I. | Neu, S. | Puschenreiter, M. | Siebielec, G. | Vangronsveld, J. | Kidd, P.S. | Instituto de Investigaciones Agrobiológicas de Galicia (IIAG) ; Consejo Superior de Investigaciones Cientificas [España] = Spanish National Research Council [Spain] (CSIC) | Department of Agri-Food Production and Environmental Sciences ; Università degli Studi di Firenze = University of Florence = Université de Florence (UniFI) | Center for Health & Bioresources ; Austrian Institute of Technology (AIT) | Waste Science & Technology ; Luleå University of Technology = Luleå Tekniska Universitet (LUT) | Department of Crop Production Ecology ; Swedish University of Agricultural Sciences = Sveriges lantbruksuniversitet (SLU) | Departement of Soil and Environment ; Swedish University of Agricultural Sciences = Sveriges lantbruksuniversitet (SLU) | Austrian Institute of Technology (AIT) | Institute of Soil Science and Plant Cultivation (IUNG) | Centre for Environmental Sciences ; Hasselt University (UHasselt) | Biodiversité, Gènes & Communautés (BioGeCo) ; Institut National de la Recherche Agronomique (INRA)-Université de Bordeaux (UB) | Saxon State Office for Environment, Agriculture and Geology | Department of Forest and Soil Sciences ; Universität für Bodenkultur Wien = University of Natural Resources and Life Sciences [Vienne, Autriche] (BOKU)-Institute of Silviculture | ANR-13-CDII-0005,PHYTOCHEM,Développement de procédés chimiques éco-innovants pour valoriser les biomasses issues des phytotechnologies(2013)
International audience | Gentle remediation options (GRO) are based on the combined use of plants, associated microorganisms and soil amendments, which can potentially restore soil functions and quality. We studied the effects of three GRO (aided-phytostabilisation, in situ stabilisation and phytoexclusion, and aided-phytoextraction) on the soil microbial biomass and respiration, the activities of hydrolase enzymes involved in the biogeochemical cycles of C, N, P, and S, and bacterial community structure of trace element contaminated soils (TECS) from six field trials across Europe. Community structure was studied using denaturing gradient gel electrophoresis (DGGE) fingerprinting of Bacteria, α- and β-Proteobacteria, Actinobacteria and Streptomycetaceae, and sequencing of DGGE bands characteristic of specific treatments. The number of copies of genes involved in ammonia oxidation and denitrification were determined by qPCR. Phytomanagement increased soil microbial biomass at three sites and respiration at the Biogeco site (France). Enzyme activities were consistently higher in treated soils compared to untreated soils at the Biogeco site. At this site, microbial biomass increased from 696 to 2352 mg ATP kg-1 soil, respiration increased from 7.4 to 40.1 mg C-CO2 kg-1 soil d-1, and enzyme activities were 2-11-fold higher in treated soils compared to untreated soil. Phytomanagement induced shifts in the bacterial community structure at both, the total community and functional group levels, and generally increased the number of copies of genes involved in the N cycle (nirK, nirS, nosZ, and amoA). The influence of the main soil physico-chemical properties and trace element availability were assessed and eventual site-specific effects elucidated. Overall, our results demonstrate that phytomanagement of TECS influences soil biological activity in the long term.
Afficher plus [+] Moins [-]PAHs and PCBs in an Eastern Mediterranean megacity, Istanbul: Their spatial and temporal distributions, air-soil exchange and toxicological effects Texte intégral
2017
Cetin, Banu | Ozturk, Fatma | Keles, Melek | Yurdakul, Sema
Istanbul, one of the mega cities in the world located between Asia and Europe, has suffered from severe air pollution problems due to rapid population growth, traffic and industry. Atmospheric levels of PAHs and PCBs were investigated in Istanbul at 22 sampling sites during four different sampling periods using PUF disk passive air samplers and spatial and temporal variations of these chemicals were determined. Soil samples were also taken at the air sampling sites. At all sites, the average ambient air Σ15PAH and Σ41PCB concentrations were found as 85.6 ± 68.3 ng m−3 and 246 ± 122 pg m−3, respectively. Phenanthrene and anthracene were the predominant PAHs and low molecular weight congeners dominated the PCBs. The PAH concentrations were higher especially at urban sites close to highways. However, the PCBs showed moderately uniform spatial variations. Except four sites, the PAH concentrations were increased with decreasing temperatures during the sampling period, indicating the contributions of combustion sources for residential heating, while PCB concentrations were mostly increased with the temperature, probably due to enhanced volatilization at higher temperatures from their sources. The results of the Factor Analysis represented the impact of traffic, petroleum, coal/biomass and natural gas combustion and medical waste incineration plants on ambient air concentrations. A similar spatial distribution trend was observed in the soil samples. Fugacity ratio results indicated that the source/sink tendency of soil for PAHs and PCBs depends on their volatility and temperature; soil generally acts as a source for lighter PAHs and PCBs particularly in higher temperatures while atmospheric deposition is a main source for higher molecular weight compounds in local soils. Toxicological effect studies also revealed the severity of air and soil pollution especially in terms of PAHs in Istanbul.
Afficher plus [+] Moins [-]Bioaccessibility of polycyclic aromatic hydrocarbons in activated carbon or biochar amended vegetated (Salix viminalis) soil Texte intégral
2017
Oleszczuk, Patryk | Godlewska, Paulina | Reible, Danny D. | Kraska, Piotr
The aim of the present study was to determine the effect of activated carbon (AC) or biochars on the bioaccessibility (Cbioacc) of polycyclic aromatic hydrocarbons (PAHs) in soils vegetated with willow (Salix viminalis). The study determined the effect of willow on the Cbioacc PAHs and the effect of the investigated amendments on changes in dissolved organic carbon (DOC), crop yield and the content of PAHs in plants. PAH-contaminated soil was amended with 2.5 wt% AC or biochar. Samples from individual plots with and without plants were collected at the beginning of the experiment and after 3, 6, 12 and 18 months. The Cbioacc PAHs were determined using sorptive bioaccessibility extraction (SBE) (silicon rods and hydroxypropyl-β-cyclodextrin). Both AC and biochar caused a decrease in the Cbioacc PAHs. Immediately after adding AC, straw-derived biochar or willow-derived biochar to the soil, the reduction in the sum of 16 (Σ16) Cbioacc PAHs was 70.3, 38.0, and 29.3%, respectively. The highest reduction of Cbioacc was observed for 5- and 6-ring PAHs (from 54.4 to 100%), whereas 2-ring PAHs were reduced only 8.0–25.4%. The reduction of Cbioacc PAHs increased over time. Plants reduced Cbioacc in all soils although effects varied by soil treatment and PAH. Willow grown in AC- and biochar-amended soil accumulated less phenanthrene than in the control soil. The presence of AC in the soil also affected willow yield and shoot length and DOC was reduced from 53.5 to 66.9% relative to unamended soils. In the biochars-amended soil, no changes in soil DOC content were noted nor effects on willow shoot length.
Afficher plus [+] Moins [-]Human exposure to PCDDs and their precursors from heron and tern eggs in the Yangtze River Delta indicate PCP origin Texte intégral
2017
Zhou, Yihui | Yin'ge, | Asplund, L. (Lillemor) | Stewart, Kathryn | Rantakokko, Panu | Bignert, Anders | Ruokojärvi, Päivi | Kiviranta, Hannu | Qiu, Yanling | Ma, Zhijun | Bergman, Åke
Polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) are highly toxic to humans and wildlife. In the present study, PCDD/Fs were analyzed in the eggs of whiskered terns (Chlidonias hybrida), and genetically identified eggs from black-crowned night herons (Nycticorax nycticorax) sampled from two lakes in the Yangtze River Delta area, China. The median toxic equivalent (TEQ) of PCDD/Fs were 280 (range: 95–1500) and 400 (range: 220–1100) pg TEQ g−1 lw (WHO, 1998 for birds) in the eggs of black-crowned night heron and whiskered tern, respectively.Compared to known sources, concentrations of PCDDs relative to the sum of PCDD/Fs in bird eggs, demonstrated high abundance of octachlorodibenzo-p-dioxin (OCDD), 1,2,3,4,6,7,8-heptaCDD and 1,2,3,6,7,8-hexaCDD indicating pentachlorophenol (PCP), and/or sodium pentachlorophenolate (Na-PCP) as significant sources of the PCDD/Fs. The presence of polychlorinated diphenyl ethers (PCDEs), hydroxylated and methoxylated polychlorinated diphenyl ethers (OH- and MeO-PCDEs, known impurities in PCP products), corroborates this hypothesis. Further, significant correlations were found between the predominant congener CDE-206, 3′-OH-CDE-207, 2′-MeO-CDE-206 and OCDD, indicating a common origin.Eggs from the two lakes are sometimes used for human consumption. The WHO health-based tolerable intake of PCDD/Fs is exceeded if eggs from the two lakes are consumed regularly on a weekly basis, particularly for children. The TEQs extensively exceed maximum levels for PCDD/Fs in hen eggs and egg products according to EU legislation (2.5 pg TEQ g−1lw). The results suggest immediate action should be taken to manage the contamination, and further studies evaluating the impacts of egg consumption from wild birds in China. Likewise, studies on dioxins and other POPs in common eggs need to be initiated around China.
Afficher plus [+] Moins [-]Assessment of the aryl hydrocarbon receptor-mediated activities of polycyclic aromatic hydrocarbons in a human cell-based reporter gene assay Texte intégral
2017
Vondráček, Jan | Pěnčíková, Kateřina | Neča, Jiří | Ciganek, Miroslav | Grycová, Aneta | Dvořák, Zdeněk | Machala, Miroslav
Activation of the aryl hydrocarbon receptor (AhR)-mediated activity is one of key events in toxicity of polycyclic aromatic hydrocarbons (PAHs). Although various classes of AhR ligands may differentially activate human and rodent AhR, there is presently a lack of data on the human AhR-inducing relative potencies (REPs) of PAHs. Here, we focused on estimation of the AhR-mediated activities of a large set of environmental PAHs in human gene reporter AZ-AhR cell line, with an aim to develop the human AhR-based REP values with potential implications for risk assessment of PAHs. The previously identified weakly active PAHs mostly failed to activate the AhR in human cells. The order for REPs of individual PAHs in human cells largely corresponded with the available data from rodent-based experimental systems; nevertheless, we identified differences up to one order of magnitude in REP values of PAHs between human and rodent cells. Higher REP values were found in human cells for some important environmental contaminants or suspected carcinogens, such as indeno[1,2,3-cd]pyrene, benz[a]anthracene or benzo[b]fluoranthene, while lower REP values were determined for methyl-substituted PAHs. Our results also indicate that a different rate of metabolism for individual PAHs in human vs. rodent cells may affect estimation of REP values in human cell-based assay, and potentially alter toxicity of some compounds, such as benzofluoranthenes, in humans. We applied the AZ-AhR assay to evaluation of the AhR-mediated activity of complex mixtures of organic compounds associated with diesel exhaust particles, and we identified the polar compounds present in these mixtures as being particularly highly active in human cells, as compared with rodent cells. The present data suggest that differences may exist between the AhR-mediated potencies of PAHs in human and rodent cells, and that the AhR-mediated effects of polar PAH derivatives and metabolites in human cell models deserve further attention.
Afficher plus [+] Moins [-]Reductions in fish-community contamination following lowhead dam removal linked more to shifts in food-web structure than sediment pollution Texte intégral
2017
Davis, Robert P. | Sullivan, Mažeika | Stefanik, Kay C.
Recent increases in dam removals have prompted research on ecological and geomorphic river responses, yet contaminant dynamics following dam removals are poorly understood. We investigated changes in sediment concentrations and fish-community body burdens of mercury (Hg), selenium (Se), polychlorinated biphenyls (PCB), and chlorinated pesticides before and after two lowhead dam removals in the Scioto and Olentangy Rivers (Columbus, Ohio). These changes were then related to documented shifts in fish food-web structure. Seven study reaches were surveyed from 2011 to 2015, including controls, upstream and downstream of the previous dams, and upstream restored vs. unrestored. For most contaminants, fish-community body burdens declined following dam removal and converged across study reaches by the last year of the study in both rivers. Aldrin and dieldrin body burdens in the Olentangy River declined more rapidly in the upstream-restored vs. the upstream-unrestored reach, but were indistinguishable by year three post dam removal. No upstream-downstream differences were observed in body burdens in the Olentangy River, but aldrin and dieldrin body burdens were 138 and 148% higher, respectively, in downstream reaches than in upstream reaches of the Scioto River following dam removal. The strongest relationships between trophic position and body burdens were observed with PCBs and Se in the Scioto River, and with dieldrin in the Olentangy River. Food-chain length – a key measure of trophic structure – was only weakly related to aldrin body burdens, and unrelated to other contaminants. Overall, we demonstrate that lowhead dam removal may effectively reduce ecosystem contamination, largely via shifts in fish food-web dynamics versus sediment contaminant concentrations. This study presents some of the first findings documenting ecosystem contamination following dam removal and will be useful in informing future dam removals.
Afficher plus [+] Moins [-]