Affiner votre recherche
Résultats 841-850 de 5,098
Comparison of PM2.5 chemical composition and sources at a rural background site in Central Europe between 1993/1994/1995 and 2009/2010: Effect of legislative regulations and economic transformation on the air quality
2018
Pokorná, Petra | Schwarz, Jaroslav | Krejci, Radovan | Swietlicki, Erik | Havránek, Vladimír | Ždímal, Vladimír
From December 1993 to January 1995 and from October 2009 to October 2010, a total of 320 and 365 daily samples of the PM2.5 were collected at a rural background site (National Atmospheric Observatory Košetice) in Central Europe. The PM2.5 samples were analyzed for 29 and 26 elements respectively by Particle-Induced X-ray Emission (PIXE) and water-soluble inorganic ions by Ion Chromatography (IC) in 2009/2010. The Positive Matrix Factorization (PMF) was applied to the chemical composition of PM2.5 to determine its sources. The decreasing trends of almost all elements concentrations, especially the metals regulated by the EU Directive (2004/107/EC) are evident. The annual median ratios indicate a decrease in concentrations of the PM2.5 elements. The slight increase of K concentrations and Spearman's rank correlation coefficient rs 0.09 K/Se points to a rise in residential wood combustion. The S concentrations are nearly comparable (higher mean in 2009/2010, while the annual median ratio is under 1). The five major source types in the mid-1990s were ascribed to brown coal combustion, oil combustion, sea salt and dust – long-range transport, re-suspended dust and black coal combustion. The industrial combustion of brown and/or black coal (rs 0.75 Se/As, rs 0.57 Ga/Ge and rs 0.20 As/Zn) and oil (rs 0.72 V/Ni) of the regional origin dominated. In the 1990s, the potential source regions were the border area of Czech Republic, German and Poland (brown coal), the Moravia-Silesia region at the Czech-Polish border (black coal), and Slovakia, Austria, Hungary, and the Balkans (oil). In 2009/2010, the apportioned sources were sulfate, residential heating, nitrate, industry, re-suspended dust, and sea salt and dust – long-range transport. The secondary sulfate from coal combustion and residential biomass burning (rs 0.96, K/K+) of local origin dominated.The declining trend of the elemental concentrations and change in the source pattern of the regional background PM2.5 in Central Europe between the mid-1990s and 2009/10 reflects the economic transformation and impact of stricter legislation in Central Europe.
Afficher plus [+] Moins [-]Evaluation of the leaching of florfenicol from coated medicated fish feed into water
2018
Barreto, Fabíola M. | da Silva, Mariana R. | Braga, Patrícia A.C. | Bragotto, Adriana P.A. | Hisano, Hamilton | Reyes, Felix G.R.
Florfenicol is one of the most-used antimicrobial agents in global fish farming. Nevertheless, in most countries, its use is not conducted in accordance with good practices. The aim of this work was to evaluate the leaching of florfenicol from coated fish feed into the water. Analytical methods were developed and validated for the quantitation of florfenicol in medicated feed and water by UHPLC-MS/MS. Florfenicol residues in the water were quantified after 5- and 15-min exposures of the medicated feed in the water at 22 and 28 °C and at pH 4.5 and 8.0. The influence of pellet size and three coating agents (vegetable oil, carboxymethylcellulose, and low-methoxylated pectin) on the leaching of the drug was also assessed. Pellet size, coating agent, water temperature, and time of exposure significantly (p < 0.05) affected florfenicol leaching, while water pH did not interfere with the leaching. Coating with vegetable oil was the most efficient method to reduce florfenicol leaching, while coating with carboxymethylcellulose presented the highest leaching (approximately 60% after 15 min at 28 °C). Thus, the coating agent has a significant effect on the florfenicol leaching rate and, consequently, on the necessary dose of the drug to be administered. Moreover, it is worth mentioning that higher florfenicol leaching will pose a greater risk to environmental health, specifically in terms of the development of bacteria resistant to florfenicol. Additional studies are needed with other polymers and veterinary drugs used in medicated feed for fish farming.
Afficher plus [+] Moins [-]Biouptake, toxicity and biotransformation of triclosan in diatom Cymbella sp. and the influence of humic acid
2018
Ding, Tengda | Lin, Kunde | Bao, Lianjun | Yang, Mengting | Li, Juying | Yang, Bo | Gan, Jay
Triclosan is one of the most frequently detected emerging contaminants in aquatic environment. In this study, we investigated the biouptake, toxicity and biotransformation of triclosan in freshwater algae Cymbella sp. The influence of humic acid, as a representative of dissolved organic matter, was also explored. Results from this study showed that triclosan was toxic to Cymbella sp. with 72 h EC₅₀ of 324.9 μg L⁻¹. Humic acid significantly reduced the toxicity and accumulation of triclosan in Cymbella sp. SEM analysis showed that Cymbella sp. were enormously damaged under 1 mg L⁻¹ triclosan exposure and repaired after the addition of 20 mg L⁻¹ humic acid. Triclosan can be significantly taken up by Cymbella sp. The toxicity of triclosan is related to bioaccumulated triclosan as the algal cell numbers decreased when intracellular triclosan increased. A total of 11 metabolites were identified in diatom cells and degradation pathways are proposed. Hydroxylation, methylation, dechlorination, amino acids conjunction and glucuronidation contributed to the transformative reactions of triclosan in Cymbella sp., producing biologically active products (e.g., methyl triclosan) and conjugation products (e.g., glucuronide or oxaloacetic acid conjugated triclosan), which may be included in the detoxification mechanism of triclosan.
Afficher plus [+] Moins [-]Threshold and multiple indicators for nitrogen saturation in subtropical forests
2018
Yu, Qian | Duan, Lei | Yu, Longfei | Chen, Xiao | Si, Gaoyue | Ke, Piaopiao | Ye, Zhixiang | Mulder, Jan
The influence of nitrogen (N) deposition on forest ecosystems largely depend on the N status. Developing threshold and practical indicators for N saturation in subtropical forests, with extremely high N deposition, would both enhance forest management and the assessments of global N balance and carbon (C) sequestration. Here, we quantified the N mass balance and assessed current N status at a number of subtropical forest sites in South China, using both N content, C/N ratio, and 15N natural abundance (δ15N) as potential indicators of N saturation. Among the studied sites, N deposition ranged from 13.8 to 113 kg N ha−1 yr−1 in throughfall, and was dominated by ammonium (NH4+). The threshold for N leaching in subtropical forest was first found to be 26–36 kg N ha−1 yr−1, which was 160% higher than in temperate forest (based on prescribed minimum). This indicates that critical parameter inputs in global models of the impact of N deposition are in need of revision, based on specific ecosystem characteristics. We found a critical C/N ratio of 20 for the O/A horizon as indicator of N saturation. Foliar N content and δ15N were positively correlated with N deposition and were well suited to indicate regional N status. The δ15N enrichment factor (Ɛfoli/So2, δ15Nfoliage - δ15NSoil2) was between −10‰ and −1‰, and had similar trend to those obtained from other regions with increasing N deposition. These suggest that the enrichment factor could be used to investigate the influence of N deposition in forest ecosystems, regardless of spatial heterogeneity in δ15N of N input, soil N availability and geomorphology.
Afficher plus [+] Moins [-]Effects of acclimation on arsenic bioaccumulation and biotransformation in freshwater medaka Oryzias mekongensis after chronic arsenic exposure
2018
Chen, Lizhao | Zhang, Wei | Guo, Zhiqiang | Zhang, Li
Fish can acclimate to chronic arsenic (As) exposure, but the mechanisms of acclimation remain unclear to date. Therefore, this study conducted 28-d chronic inorganic As [As(III) and As(V)] exposures in freshwater medaka (Oryzias mekongensis), examined the As bioaccumulation and biotransformation during exposure, and the As acute toxicity and toxicokinetics after exposure. After chronic As(V) exposure, the 96-h lethal concentration (96-h LC50) of As(V) increased 1.3-fold (from 223 to 286 μmol/L), indicating that the fish became more tolerant to As(V). The As bioaccumulation in As(V)-exposed fish increased gradually during the initial 21-d exposure period and then decreased at 28 d, indicating that acclimation occurred to regulate the total As levels. Toxicokinetics measurement suggested that As(V) uptake (uptake rate constant, ku) was significantly decreased and As(III) elimination (efflux rate constant, ke1) was significantly increased, both of which could reduce As bioaccumulation. Furthermore, the organic As species became more predominant (50.1–69.3%) in exposed fish, while the inorganic As species were predominant (53.6–56.4%) in the control fish, suggesting that the capability of As biotransformation increased to acclimate inorganic As during chronic exposure. In summary, this study elucidated the acclimation strategies (reduced bioaccumulation and increased biotransformation) of O. mekongensis to counter the ambient As contamination.
Afficher plus [+] Moins [-]Dynamic probabilistic material flow analysis of nano-SiO2, nano iron oxides, nano-CeO2, nano-Al2O3, and quantum dots in seven European regions
2018
Wang, Yan | Nowack, Bernd
Static environmental exposure assessment models based on material flow analysis (MFA) have previously been used to estimate flows of engineered nanomaterials (ENMs) to the environment. However, such models do not account for changes in the system behavior over time. Dynamic MFA used in this study includes the time-dependent development of the modelling system by considering accumulation of ENMs in stocks and the environment, and the dynamic release of ENMs from nano-products. In addition, this study also included regional variations in population, waste management systems, and environmental compartments, which subsequently influence the environmental release and concentrations of ENMs. We have estimated the flows and release concentrations of nano-SiO₂, nano-iron oxides, nano-CeO₂, nano-Al₂O₃, and quantum dots in the EU and six geographical sub-regions in Europe (Central Europe, Northern Europe, Southern Europe, Eastern Europe, South-eastern Europe, and Switzerland). The model predicts that a large amount of ENMs are accumulated in stocks (not considering further transformation). For example, in the EU 2040 Mt of nano-SiO₂ are stored in the in-use stock, 80,400 tonnes have been accumulated in sediments and 65,600 tonnes in natural and urban soil from 1990 to 2014. The magnitude of flows in waste management processes in different regions varies because of differences in waste handling. For example, concentrations in landfilled waste are lowest in South-eastern Europe due to dilution by the high amount of landfilled waste in the region. The flows predicted in this work can serve as improved input data for mechanistic environmental fate models and risk assessment studies compared to previous estimates using static models.
Afficher plus [+] Moins [-]Occurrences, sources, and transport of hydrophobic organic contaminants in the waters of Fildes Peninsula, Antarctica
2018
Gao, Xiaozhong | Huang, Chao | Rao, Kaifeng | Xu, Yiping | Huang, Qinghui | Wang, Feng | Ma, Mei | Wang, Zijian
As a pristine continent, Antarctica provides a good opportunity to study the spatial transport and temporal accumulation of environmental contaminants and the impacts of anthropogenic activities, both of which have given rise to ongoing public concern. In this research, an approach of coupling aquatic time-integrated passive sampling with chemical analysis and bioassays was used to assess pollution by hydrophobic organic contaminants in Antarctic waters. Passive samplers were deployed in waters of Fildes Peninsula, Antarctica, and their extracts were used for chemical analyses of sixty-six hydrophobic organic contaminants belonging to five groups [organophosphorus flame retardants (PFRs), phthalic acid esters (PAEs), polycyclic aromatic hydrocarbons (PAHs), organochlorine pesticides (OCPs), and polychlorinated biphenyls (PCBs)] and in vitro bioassays for endocrine disruption and genotoxicity. In total, twenty pollutants (six PFRs, one PAE, two PAHs, six OCPs, and five PCBs) were quantified, and six PFRs had concentrations that ranged from ND (not detected) to 44.37 ng L−1 in Antarctic waters. The concentrations detected in the waters were generally low and insufficient to have significant in vitro endocrine disruption potential or genotoxicity. The source and transport pathways of PFRs and PAE in Fildes Peninsula were studied, and multiple local sources (wastewater, air traffic, research stations, and animal feces) for different PFRs were proposed. A spatial and temporal analysis showed slight changes in the exposure of OCPs and PCBs in Antarctic waters. Furthermore, a comparison among a variety of Antarctic water sampling cases revealed that passive sampling can be a tool for aquatic time-integrated investigations in polar regions.
Afficher plus [+] Moins [-]Enzyme activity indicates soil functionality affectation with low levels of trace elements
2018
Martín-Sanz, Juan Pedro | Valverde-Asenjo, Inmaculada | de Santiago-Martín, Ana | Quintana-Nieto, José Ramón | González-Huecas, Concepción | López-Lafuente, Antonio L. | Diéguez-Antón, Ana
The use of the soil can alter its functionality and influence the (bio)availability of any contaminants present. Our study considers two types of agricultural soils, rainfed and olive soils, managed according to conventional practices that apply contaminants directly to the soil (fertilizers, pesticides, fungicides, etc.) and receive contaminants from the atmosphere (traffic, industry, etc.); and a forest soil that is not subject to these agricultural practices. In this scenario, we consider a mixture of 16 trace elements (As, Ba, Be, Cd, Co, Cr, Cu, Hg, Mo, Ni, Pb, Se, Sb, Sn, V and Zn), since their interactions with the soil can produce synergistic and/or antagonistic effects that are not considered in most studies. We studied whether the content and (bio)availability of low concentrations of a mixture of trace elements affect the soil functionality in terms of the activity of some key enzymes We analysed the total, potentially and immediately available fractions, the soil parameters and soil enzyme activity. The results show that the functionality of the soils studied was affected despite the low concentrations of trace elements. The highest concentrations of total trace elements and available fractions were found in forest soils compared to the other two uses. Soil enzyme activity is best explained by the potentially available fraction of a mixture of trace elements and physico-chemical soil variables. In our study, pH, total nitrogen, organic carbon and fine mineral particles (silt and clay) had an influence on soil enzyme activity and the (bio)available fractions of trace elements.
Afficher plus [+] Moins [-]Optimizing critical source control of five priority-regulatory trace elements from industrial wastewater in China: Implications for health management
2018
Wu, Wenjun | Wang, Jinnan | Yu, Yang | Jiang, Hongqiang | Liu, Nianlei | Bi, Jun | Liu, Miaomiao
Anthropogenic emissions of toxic trace elements (TEs) have caused worldwide concern due to their adverse effects on human health and ecosystems. Based on a stochastic simulation of factors' probability distribution, we established a bottom-up model to estimate the amounts of five priority-regulatory TEs released to aquatic environments from industrial processes in China. Total TE emissions in China in 2010 were estimated at approximately 2.27 t of Hg, 310.09 t of As, 318.17 t of Pb, 79.72 t of Cd, and 1040.32 t of Cr. Raw chemicals, smelting, and mining were the leading sources of TE emissions. There are apparent regional differences in TE pollution. TE emissions are much higher in eastern and central China than in the western provinces and are higher in the south than in the north. This spatial distribution was characterized in detail by allocating the emissions to 10 km × 10 km grid cells. Furthermore, the risk control for the overall emission grid was optimized according to each cell's emission and risk rank. The results show that to control 80% of TE emissions from major sources, the number of top-priority control cells would be between 200 and 400, and less than 10% of the total population would be positively affected. Based on TE risk rankings, decreasing the population weighted risk would increase the number of controlled cells by a factor of 0.3–0.5, but the affected population would increase by a factor of 0.8–1.5. In this case, the adverse effects on people's health would be reduced significantly. Finally, an optimized strategy to control TE emissions is proposed in terms of a cost-benefit trade-off. The estimates in this paper can be used to help establish a regional TE inventory and cyclic simulation, and it can also play supporting roles in minimizing TE health risks and maximizing resilience.
Afficher plus [+] Moins [-]Improve ground-level PM2.5 concentration mapping using a random forests-based geostatistical approach
2018
Liu, Ying | Cao, Guofeng | Zhao, Naizhuo | Mulligan, Kevin | Ye, Xinyue
Accurate measurements of ground-level PM₂.₅ (particulate matter with aerodynamic diameters equal to or less than 2.5 μm) concentrations are critically important to human and environmental health studies. In this regard, satellite-derived gridded PM₂.₅ datasets, particularly those datasets derived from chemical transport models (CTM), have demonstrated unique attractiveness in terms of their geographic and temporal coverage. The CTM-based approaches, however, often yield results with a coarse spatial resolution (typically at 0.1° of spatial resolution) and tend to ignore or simplify the impact of geographic and socioeconomic factors on PM₂.₅ concentrations. In this study, with a focus on the long-term PM₂.₅ distribution in the contiguous United States, we adopt a random forests-based geostatistical (regression kriging) approach to improve one of the most commonly used satellite-derived, gridded PM₂.₅ datasets with a refined spatial resolution (0.01°) and enhanced accuracy. By combining the random forests machine learning method and the kriging family of methods, the geostatistical approach effectively integrates ground-based PM₂.₅ measurements and related geographic variables while accounting for the non-linear interactions and the complex spatial dependence. The accuracy and advantages of the proposed approach are demonstrated by comparing the results with existing PM₂.₅ datasets. This manuscript also highlights the effectiveness of the geographical variables in long-term PM₂.₅ mapping, including brightness of nighttime lights, normalized difference vegetation index and elevation, and discusses the contribution of each of these variables to the spatial distribution of PM₂.₅ concentrations.
Afficher plus [+] Moins [-]