Affiner votre recherche
Résultats 841-850 de 6,560
Exposure to low dose ZnO nanoparticles induces hyperproliferation and malignant transformation through activating the CXCR2/NF-κB/STAT3/ERK and AKT pathways in colonic mucosal cells Texte intégral
2020
Meng, Jian | Zhou, Xiaoling | Yang, Juan | Qu, Xianjun | Cui, Shuxiang
As ZnO nanoparticles have been applied in many fields, their biological risks on human health, of course, are worthy of our attention. Whether ZnO NPs have the risk and how colonic cells respond to the invaded ZnO NPs are still unknown. Herein, we evaluated the biological effects of ZnO NPs on colonic mucosal cells by in vitro and in vivo methods. IMCE cells, with APC mutation but phenotypically normal, demonstrated hyperproliferation through activating the CXCR2/NF-κB/STAT3/ERK and AKT pathways when exposed to ZnO NPs for 24 h. Long-term exposure of ZnO NPs resulted in the malignant transformation of IMCE cells, showing the morphological changes, anchorage-independent cell growth ability. Importantly, IMCE cells exposed to ZnO NPs subcutaneously grew and induced tumorigenesis in nude mice. In conclusion, exposure of ZnO NPs could induce malignant transformation of colonic mucosal cells through the CXCR2/NF-κB/STAT3/ERK and AKT pathways. We suggest that it was necessary to consider using the precautionary principle for gastrointestinal contact nanomaterials.
Afficher plus [+] Moins [-]Thallium(I) sequestration by jarosite and birnessite: Structural incorporation vs surface adsorption Texte intégral
2020
Aguilar-Carrillo, J. | Herrera-García, L. | Reyes-Domínguez, Iván A. | Gutiérrez, Emmanuel J.
Jarosite and birnessite secondary minerals play a pivotal role in the mobility, transport and fate of trace elements in the environment, although geochemical interactions of these compounds with extremely toxic thallium (Tl) remain poorly known. In this study, we investigated the sorption behavior of Tl(I) onto synthetic jarosite and birnessite, two minerals commonly found in soils and sediments as well as in mining-impacted areas where harsh conditions are involved. To achieve this, sorption and desorption experiments were carried out under two different acidic conditions and various Tl(I) concentrations to mimic natural scenarios. In addition, X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and inductively coupled plasma (ICP) analyses were conducted to determine the performance of both minerals for Tl(I) sequestration. Our results indicate that both phases can effectively remove aqueous Tl by different sorption mechanisms. Jarosite preferentially incorporates Tl(I) into the structure to form Tl(I)-jarosite and eventually the mineral dorallcharite (TlFe₃(SO₄)₂(OH)₆) as increasing amounts of Tl are employed. Birnessite, however, favorably uptakes Tl(I) through an irreversible surface adsorption mechanism, underlining the affinity of Tl for this mineral in the entire concentration range studied (0.5–5 mmol L⁻¹). Lastly, the presence of Tl(I) in conditions where aqueous molar ratio Tl/Mn is ∼0.25 inhibits the formation of birnessite since oxidation of Tl(I) to Tl(III) followed by precipitation of avicennite (Tl₂O₃) take place. Thus, the present research may provide useful insights on the role of both jarosite and birnessite minerals in Tl environmental cycles.
Afficher plus [+] Moins [-]Light absorption properties of elemental carbon (EC) and water-soluble brown carbon (WS–BrC) in the Kathmandu Valley, Nepal: A 5-year study Texte intégral
2020
Chen, Pengfei | Kang, Shichang | Tripathee, Lekhendra | Ram, Kirpa | Rupakheti, Maheswar | Panday, Arnico K. | Zhang, Qianggong | Guo, Junming | Wang, Xiaoxiang | Pu, Tao | Li, Yizhong
This study presents a comprehensive analysis of organic carbon (OC), elemental carbon (EC), and particularly the light absorption characteristics of EC and water-soluble brown carbon (WS–BrC) in total suspended particles in the Kathmandu Valley from April 2013 to January 2018. The mean OC, EC, and water-soluble organic carbon (WSOC) concentrations were 34.8 ± 27.1, 9.9 ± 5.8, and 17.4 ± 12.5 μg m⁻³, respectively. A clear seasonal variation was observed for all carbonaceous components with higher concentrations occurring during colder months and lower concentrations in the monsoon season. The relatively low OC/EC ratio (3.6 ± 2.0) indicates fossil fuel combustion as the primary source of carbonaceous components. The optical attenuation (ATN) at 632 nm was significantly connected with EC loading (ECS) below 15 μg cm⁻² but ceased as ECS increased, reflecting the increased influence of the shadowing effect. The derived average mass absorption cross-section of EC (MACEC) (7.0 ± 4.2 m² g⁻¹) is comparable to that of freshly emitted EC particles, further attesting that EC was mainly produced from local sources with minimal atmospheric aging processes. Relatively intensive coating with organic aerosols and/or salts (e.g., sulfate, nitrate) was probably the reason for the slightly higher MACEC during the monsoon season, whereas increased biomass burning was a major factor leading to lower MACEC in other seasons. The average MACWS₋BᵣC at 365 nm was 1.4 ± 0.3 m² g⁻¹ with minimal seasonal variations. In contrast to MACEC, biomass burning was the main reason for a higher MACWS₋BᵣC in the non-monsoon season. The relative light absorption contribution of WS-BrC to EC was 9.9% over the 300–700 nm wavelength range, with a slightly higher ratio (13.6%) in the pre-monsoon season. Therefore, both EC and WS-BrC should be considered in the study of optical properties and radiative forcing of carbonaceous aerosols in this region.
Afficher plus [+] Moins [-]The synergetic role of rice straw in enhancing the process of Cr(VI) photoreduction by oxalic acid Texte intégral
2020
Zhang, Ling | Sun, Jie | Niu, Weiya | Cao, Fengming
Based on the goal of green and effective removal of chromium (Cr(VI)) pollution in water and the idea of treating waste with waste, rice straw (RS) was firstly and successfully used in enhancing the photoreduction of highly toxic Cr(VI) to less toxic Cr(III) by oxalic acid (Ox). Batch experiments (the effect of Ox concentration, initial Cr(VI) concentration, RS dosage and coexisting ions) in Ox + RS + UV photoreduction system were designed to investigate the reaction process. Through studying the effect of initial pH in the solution, the change of pH during the photoreduction process and the free radical scavenging test, the Cr(VI) photoreduction mechanism in Ox + RS + UV system was revealed. The role of RS in Ox + RS + UV system was also deduced by the analysis of FT-IR, XRD, Mott-Schottky and the verification test of the role of –OH and SiO₂ on RS. The results showed that RS could significantly synergize Ox to reduce Cr(VI) under UV, 1 mM Cr(VI) in aqueous solution was completely removed in 60 min by Ox + RS + UV system. The Cr(VI) photoreduction mechanism in Ox + RS + UV system consisted of multiple parts: the chemical reduction by Ox(few part), the photoreduction by Ox(some part), and the synergistic photoreduction by RS with Ox(large part). The synergism of RS in Ox + RS + UV system was mainly attributed to its components of SiO₂ and –OH of cellulose.
Afficher plus [+] Moins [-]Monobutyl phthalate (MBP) can dysregulate the antioxidant system and induce apoptosis of zebrafish liver Texte intégral
2020
Jiao, Yaqi | Tao, Yue | Yang, Yang | Diogene, Tuyiringire | Yu, Hui | He, Ziqing | Han, Wei | Chen, Zhaobo | Wu, Pan | Zhang, Ying
In this paper, the acute toxicity of monobutyl phthalate (MBP), the main hydrolysis product of dibutyl phthalate, on adult zebrafish liver antioxidant system was studied. Compared the toxicity effect of MBP and DBP by histopathology and apoptosis experiments, we speculated that the toxic effects of DBP on animals may be caused by its metabolite MBP. The results indicated that the antioxidant Nrf2-Keap1 pathway was insufficient to resist MBP-induced hepatotoxicity and led to an imbalance of membrane ion homeostasis and liver damage. Decreased cell viability, significant tissue lesions and early hepatocyte apoptosis were observed in the zebrafish liver in MBP exposure at high concentration (10 mg/L). The activities of antioxidant enzymes and ATPases in zebrafish liver were inhibited with increased malondialdehyde (MDA) content and alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities. Integrated biomarker response (IBR) calculation results indicated that MBP mainly inhibited catalase (CAT) activity. Simultaneously, the expression of antioxidant-related genes (SOD, CAT, GPx, Nrf2, HO-1) was down-regulated, while apoptosis-related genes (p53, bax, cas3) were significantly up-regulated.
Afficher plus [+] Moins [-]The toxicity effects and mechanisms of tris(1,3-dichloro-2-propyl) phosphate (TDCPP) and its ecological risk assessment for the protection of freshwater organisms Texte intégral
2020
Liu, Daqing | Yan, Zhenfei | Liao, Wei | Bai, Yingchen | Feng, Chenglian
Tris (1,3-dichloro-2-propyl) phosphate (TDCPP) is a type halogenated organophosphate flame retardants (OPFRs), which has been identified as contaminants of emerging concern (CECs). The use and production of OPFRs began to increase gradually when brominated flame retardants (BFRs) were banned. Halogenated OPFRs, especially TDCPP have been considered to lead to mutagenicity and carcinogenesis and major concerns have been raised regarding their toxicity. In this study, the toxicity effects and mechanisms of TDCPP were summarized and ecological risk assessment was made regarding its potential impact on freshwater organisms. TDCPP has been widely detected in ecosystems throughout the world, with observed toxicity effects on both humans and freshwater organisms. Inhalation of the dust was found to be the main exposure for humans. TDCPP could be metabolized in the human body, and medium stability was achieved in human body with the main metabolite BDCPP. Aside from mutagenicity and carcinogenesis, TDCPP was also found to have the potential for endocrine disruption and impairing the human reproductive system. Furthermore, this study reviewed the results of previous toxicity experiments, including acute toxicity, growth and development toxicity, neurotoxicity, and hepatotoxicity in freshwater organisms. Risk assessment was made using the safety threshold method by comparing the toxicity data with the exposure data in freshwater. HC₅ (hazardous concentration for 5% of organisms) derived based on traditional endpoints of acute toxicity LC₅₀ (median lethal concentration) or EC₅₀ (concentration for 50% of maximal effect) was 877 μg/L. This value was much higher than the exposure concentration levels in the surface water with EXD₉₀ (exposure data with cumulative probability 90%) of 65.22 ng/L. However, based on the growth and development toxicity data, the derived HC₅ was 33.33 ng/L and the calculated MOS (margin of safety) was below 1. Therefore, the results validated the fact that the ecological risk of TDCPP could not be neglected for its growth and development toxicity.
Afficher plus [+] Moins [-]Influence of dike-induced morphologic and sedimentologic changes on the benthic ecosystem in the sheltered tidal flats, Saemangeum area, west coast of Korea Texte intégral
2020
Kim, Dohyeong | Jo, Joohee | Kim, Bora | Ryu, Jongseong | Choi, Kyungsik
The effects of dike construction on the geomorphology and sedimentary processes of tidal flats were investigated using high-precision topographic profiling, short cores, and unmanned aviation vehicle (UAV)-assisted photogrammetry to understand their adverse consequences on the benthic ecosystem. Tidal flats at the south of Shinsi Island near one of the two sluice gates of the Saemangeum dike, display prominent morphologic features known as shelly sand ridges or cheniers (sensu Otvos, 2000) that have migrated landward about 5 m in a year. The tidal flats were dominated by erosion from winter to spring and by deposition during the remainder of the year except for the periods of heavy precipitation when tidal drainage channels became larger and deeper by headward erosion. With overall coarser-grained surface sediments, the presence of actively migrating wave-built cheniers are in stark contrast to muddy tidal flats with a monotonous morphology before the completion of the Saemangeum dike in 2006. Southeasterly waves reflected from the dike during winter to spring when north to northwesterly winds prevail account for the wave-induced onshore sediment transport and rapid morphologic changes in the tidal flats despite their location protected from offshore waves. The diversity and biomass of major macrofauna species tend to increase during rapid erosion and decrease during rapid deposition, highlighting the anthropogenic effect of dike-induced physical disturbance on the benthic ecosystem in the otherwise sheltered tidal flats.
Afficher plus [+] Moins [-]Toxicity prediction and effect characterization of 90 pharmaceuticals and illicit drugs measured in plasma of fish from a major European river (Sava, Croatia) Texte intégral
2020
Malev, Olga | Lovrić, Mario | Stipaničev, Draženka | Repec, Siniša | Martinović-Weigelt, Dalma | Zanella, Davor | Ivanković, Tomislav | Sindičić Đuretec, Valnea | Barišić, Josip | Li, Mei | Klobučar, Göran
Chemical analysis of plasma samples of wild fish from the Sava River (Croatia) revealed the presence of 90 different pharmaceuticals/illicit drugs and their metabolites (PhACs/IDrgs). The concentrations of these PhACs/IDrgs in plasma were 10 to 1000 times higher than their concentrations in river water. Antibiotics, allergy/cold medications and analgesics were categories with the highest plasma concentrations. Fifty PhACs/IDrgs were identified as chemicals of concern based on the fish plasma model (FPM) effect ratios (ER) and their potential to activate evolutionary conserved biological targets. Chemicals of concern were also prioritized by calculating exposure-activity ratios (EARs) where plasma concentrations of chemicals were compared to their bioactivities in comprehensive ToxCast suite of in vitro assays. Overall, the applied prioritization methods indicated stimulants (nicotine, cotinine) and allergy/cold medications (prednisolone, dexamethasone) as having the highest potential biological impact on fish. The FPM model pointed to psychoactive substances (hallucinogens/stimulants and opioids) and psychotropic substances in the cannabinoids category (i.e. CBD and THC). EAR confirmed above and singled out additional chemicals of concern - anticholesteremic simvastatin and antiepileptic haloperidol. Present study demonstrates how the use of a combination of chemical analyses, and bio-effects based risk predictions with multiple criteria can help identify priority contaminants in freshwaters. The results reveal a widespread exposure of fish to complex mixtures of PhACs/IDrgs, which may target common molecular targets. While many of the prioritized chemicals occurred at low concentrations, their adverse effect on aquatic communities, due to continuous chronic exposure and additive effects, should not be neglected.
Afficher plus [+] Moins [-]Photocatalytic elimination of interfacial water pollutants by floatable photoreactive composite nanoparticles Texte intégral
2020
Abdelghafour, Mohamed M. | Deák, Ágota | Mérai, László | Ágoston, Áron | Bélteki, Rita | Sebők, Dániel | Dékány, Imre | Janovák, László
Disastrous oil spills cause severe environmental issues. The shortcomings of current cleaning methods for remediating oil have prompted the latest research drive to create intelligent nanoparticles that absorb oil. We, therefore, synthesized 197 ± 50 nm floatable photoreactive hybrid nanoparticles with Ag–TiO₂ plasmonic photocatalyst (Eg = 3.08 eV) content to eliminate interfacial water pollutants, especially toluene-based artificial oil spill. We found that the composite particles have non-wetting properties in the aqueous media and float easily on the surface of the water due to the moderate hydrophobic nature (Θ = 113°) of the matrix of polystyrene, and these properties lead to elevated absorption of the interfacial organic pollutants (e.g., mineral oil). We showed that (28.5 mol%) divinylbenzene cross-linker content was required for adequate swelling capacity (2.15 g/g), whereas incorporated 15.8% Ag–TiO₂ content in the swollen particles was enough for efficient photodegradation of the artificial oil spill under 150 min LED light (λₘₐₓ = 405 nm) irradiation. The swollen polymer particles with embedded 32 ± 7 nm Ag–TiO₂ content increase the efficiency of photooxidation by increased the direct contact between both the photocatalysts and the artificial oil spill. Finally, it was also presented that the composite particles destroy themselves: after approximately one and a half months of continuous LED light irradiation, the organic polymer component of the composite was almost completely (88.5%) photodegraded by the incorporated inorganic photocatalyst particles.
Afficher plus [+] Moins [-]Uptake, toxicity, and maternal transfer of cadmium in the oribatid soil mite, Oppia nitens: Implication in the risk assessment of cadmium to soil invertebrates Texte intégral
2020
Fajana, Hamzat O. | Jegede, Olukayode O. | James, Kyle | Hogan, Natacha S. | Siciliano, Steven D.
Cadmium (Cd) is a heavy metal of concern in contaminated sites because of its high toxicity to soil biota and humans. Typically, Cd exposure is thought to be dominated by dissolved Cd in soil pore water and, thus, dermal uptake. In this study, we investigated the uptake, toxicity, and maternal transfer of Cd in a standard soil invertebrate, the oribatid mite (Oppia nitens), which is common to boreal and temperate ecozones. We found total soil Cd predicted Cd uptake in adult and juvenile O. nitens with no significant uptake from pore water by juvenile mites. Cadmium significantly inhibited juvenile production and recruitment as well as reduced adult fecundity. Adult O. nitens maternally transferred 39–52% of their Cd body burden to juveniles (tritonymphs) while the maternally-acquired Cd accounted for 41% of the juvenile internal Cd load. Our results suggest that dermal adsorption of metal ions is not important for O. nitens and that maternal transfer of Cd in soil invertebrates has ecological and toxicological implications for populations of soil invertebrates. Maternal transfer should be incorporated as a criterion in setting environmental soil quality guidelines (SQGE) for cadmium and other non-essential heavy metals.
Afficher plus [+] Moins [-]