Affiner votre recherche
Résultats 851-860 de 5,151
Airborne ultrafine particles in a naturally ventilated metro station: Dominant sources and mixing state determined by particle size distribution and volatility measurements Texte intégral
2018
Mendes, Luís | Gini, Maria I. | Biskos, George | Colbeck, I. (Ian) | Eleftheriadis, Konstantinos
Ultrafine particle number concentrations and size distributions were measured on the platform of a metro station in Athens, Greece, and compared with those recorded at an urban background station. The volatility of the sampled particles was measured in parallel, providing further insights on the mixing state and composition of the sampled particles. Particle concentration exhibited a mean value of 1.2 × 10⁴ # cm⁻³ and showed a weak correlation with train passage frequency, but exhibited a strong correlation with urban background particle concentrations. The size distribution appears to be strongly influenced by outdoor conditions, such as the morning traffic rush hour and new particle formation events observed at noon. The aerosol in the metro was externally mixed throughout the day, with particle populations being identified (1) as fully refractory particles being more dominant during the morning traffic rush hours, (2) as core-shell structure particles having a non-volatile core coated with volatile material, and (3) fully volatile particles. The evolution of particle volatility and size throughout the day provide additional support that most nanoparticles in the metro station originate from outdoor urban air.
Afficher plus [+] Moins [-]Changes in mycelia growth, sporulation, and virulence of Phytophthora capsici when challenged by heavy metals (Cu2+, Cr2+ and Hg2+) under acid pH stress Texte intégral
2018
Liu, Peiqing | Wei, Mengyao | Zhang, Jinzhu | Wang, Rongbo | Li, Benjin | Chen, Qinghe | Weng, Qiyong
Phytophthora capsici, an economically devastating oomycete pathogen, causes devastating disease epidemics on a wide range of vegetable plants and pose a grave threat to global vegetables production. Heavy metals and acid pH are newly co-occurring stresses to soil micro-organisms, but what can be expected for mycelia growth and virulence and how they injure the oomycetes (especially P. capsici) remains unknown. Here, the effects of different heavy metals (Cu²⁺, Cr²⁺, and Hg²⁺) on mycelia growth and virulence were investigated at different pHs (4.0 vs. 7.0) and the plausible molecular and physiological mechanisms were analyzed. In the present study, we compared the effective inhibition of different heavy metals (Cu²⁺, Cr²⁺, and Hg²⁺) and acid pH on a previously genome sequenced P. capsici virulent strain LT1534. Both stress factors independently affected its mycelia growth and sporulation. Next, we investigated whether ROS participated in the pH-inhibited mycelial growth, finding that the ROS scavenger, catalase (CAT), significantly inhibited the acid pH-induced ROS in mycelia. Additionally, because MAPK specially transmits different stress responsive signals in environment into cells, we employed CAT and a p38-MAPK pathway inhibitor to investigate ROS and p38-MAPK roles in heavy metal-inhibited mycelia growth at different pHs (4.0 vs. 7.0), finding that they significantly inhibited growth. Furthermore, ROS and p38-MAPK influenced the heavy metal-induced TBARS content, total antioxidant capacity (TAC), and CAT activity at different pHs, and also reduced the expression of infection-related laccases (PcLAC2) and an effector-related protein (PcNLP14). We propose that acid pH stress accelerates how heavy metals inhibit mycelium growth, sporulation, and virulence change in P. capsici, and posit that ROS and p38-MAPK function to regulate the molecular and physiological mechanisms underlying this toxicity. Although these stresses induce molecular and physiological challenges to oomycetes, much remains to be known the mechanisms dedicated to resolve these environmental stresses.
Afficher plus [+] Moins [-]Rhamnolipid influences biosorption and biodegradation of phenanthrene by phenanthrene-degrading strain Pseudomonas sp. Ph6 Texte intégral
2018
Ma, Zhao | Liu, Juan | Dick, Richard P. | Li, Hui | Shen, Di | Gao, Yanzheng | Waigi, Michael Gatheru | Ling, Wanting
Given the sub-lethal risks of synthetic surfactants, rhamnolipid is a promising class of biosurfactants with the potential to promote the bioavailability of polycyclic aromatic hydrocarbons (PAHs), to provide a favorable substitute for synthetic surfactants. However, few previous studies have integrated the behavior and mechanism behind rhamnolipid-influenced PAH biosorption and biodegradation. This is, to our knowledge, the first report of a bacterial envelope regulated link between phenanthrene (PHE) biosorption and biodegradation by rhamnolipid-induced PHE-degrading strain Pseudomonas sp. Ph6. Rhamnolipid (0─400 mg L−1) can change the cell-surface zeta potential, cell surface hydrophobicity (CSH), cell ultra-microstructure and functional groups, and then alter PHE biosorption and biodegradation of Ph6. Greater amounts of PHE sorbed on cell envelopes results in more PHE diffusing into cytochylema, thus favoring PHE intracellular biodegradation of Ph6. Rhamnolipid (≤100 mg L−1) could change the microstructures and functional groups of cell envelopes of Ph6, enhance the cell-surface zeta potential and CSH, thus consequently favor PHE biosorption and biodegradation by strain Ph6. By contrast, rhamnolipid at higher concentrations (≥200 mg L−1) hindered PHE biosorption and biodegradation. Rhamnolipid, as a biosurfactant, can be successfully utilized as an additive to improve the microbial biodegradation of PAHs in the environments.
Afficher plus [+] Moins [-]Seasonal and annual variations in removal efficiency of perfluoroalkyl substances by different wastewater treatment processes Texte intégral
2018
Chen, Shuqin | Zhou, Yunqiao | Meng, Jing | Wang, Tieyu
Municipal wastewater treatment plants (WWTPs) are important in the migration and transformation of perfluoroalkyl substances (PFASs) in water bodies. Six municipal WWTPs located in the upper reaches of the Guanting reservoir, along the Yanghe River, were sampled from November 2016 to July 2017. Influents, effluents, and activated sludge solutions were sampled and the concentrations of 17 PFASs were analyzed. Perfluorobutanoic acid (PFBA), Perfluorooctanoic acid (PFOA), Perfluorohexanoic acid (PFHxA), Perfluoropentanoic acid (PFPeA), Perfluorobutane sulfonat (PFBS) and Perfluorooctane sulfonate (PFOS) accounted for more than 90% of these. Seasonal variations in PFASs in influent directly influenced concentrations in supernatant and effluent. The annual average PFAS concentrations were 46.4, 45.1, and 38.5 ng L⁻¹ in influent, supernatant, and effluent, respectively, indicating that WWTPs do not efficiently remove PFASs from wastewater. Annual average PFAS removal efficiencies differed among WWTPs, were influenced primarily by the treatment process used at each, and followed the order Cyclic Activated Sludge System (CASS, 32.2%) > Orbal Oxidation Ditch (OD, 17.5%) > Anaeroxic–Anoxic–Oxic (A²/O, −1.49%). Short-chain PFASs were removed significantly more efficiently in the CASS compared to the other systems. These results can show how traditional wastewater treatment plants can help remove PFASs from the environment.
Afficher plus [+] Moins [-]Fertilizer application in rural cropland drives cadmium enrichment in bats dwelling in an urban area Texte intégral
2018
Liu, Sha | Yu, Wenhua | Li, Feng | Zhao, Jing | Yin, Ru-Yi | Zhou, Zhao-Min | Pan, Bo
The transfer of pollutants from chemical fertilizers through food webs within cropland is well documented; however, its impacts on the wild animals that forage on croplands but roost in other locations remain poorly understood. The potential for this cross-ecosystem ‘spillover’ of pollutants is greatest for bats, some of which exploit urban settlements as roosting niches but must travel long distances to reach croplands as foraging niches. Here, we used hairs from a colony of insectivorous bats, Chinese Noctule (Nyctalus plancyi), from an urban area in Southwest China to assess whether exposure to heavy metals/metalloids by the bats varied from 1975 to 2016. Historical changes occurred in hair cadmium (Cd) concentrations in adult females, which was exclusively explained by the regional fertilizer application intensity (FAI), even considering the potential impacts of Cd emissions in urban areas, as indicated by camphor trees (Cinnamomum camphora) near the bats' roosting niche, and the potential impacts of Cd in industrial wastewater, as documented in authorized databases. Therefore, the data from this bat colony, as urban dwellers, indicates Cd accumulation and cross-ecosystem transfer from rural croplands to an urban area.
Afficher plus [+] Moins [-]Ambient fine and coarse particles in Japan affect nasal and bronchial epithelial cells differently and elicit varying immune response Texte intégral
2018
Onishi, Toshinori | Honda, Akiko | Tanaka, Michitaka | Chowdhury, Pratiti H. | Okano, Hitoshi | Okuda, Tomoaki | Shishido, Daiki | Terui, Yoshihiro | Hasegawa, Shuichi | Kameda, Takayuki | Tohno, Susumu | Hayashi, Masahiko | Nishita-Hara, Chiharu | Hara, Keiichiro | Inoue, Kozo | Yasuda, Makoto | Hirano, Shigeru | Takano, Hirohisa
Ambient particulate matter (PM) epidemiologically exacerbates respiratory and immune health, including allergic rhinitis (AR) and bronchial asthma (BA). Although fine and coarse particles can affect respiratory tract, the differences in their effects on the upper and lower respiratory tract and immune system, their underlying mechanism, and the components responsible for the adverse health effects have not been yet completely elucidated. In this study, ambient fine and coarse particles were collected at three different locations in Japan by cyclone technique. Both particles collected at all locations decreased the viability of nasal epithelial cells and antigen presenting cells (APCs), increased the production of IL-6, IL-8, and IL-1β from bronchial epithelial cells and APCs, and induced expression of dendritic and epithelial cell (DEC) 205 on APCs. Differences in inflammatory responses, but not in cytotoxicity, were shown between both particles, and among three locations. Some components such as Ti, Co, Zn, Pb, As, OC (organic carbon) and EC (elemental carbon) showed significant correlations to inflammatory responses or cytotoxicity. These results suggest that ambient fine and coarse particles differently affect nasal and bronchial epithelial cells and immune response, which may depend on particles size diameter, chemical composition and source related particles types.
Afficher plus [+] Moins [-]Characterization of airborne particles emitted by an electrically heated tobacco smoking system Texte intégral
2018
Pacitto, A. | Stabile, L. | Scungio, M. | Rizza, V. | Buonanno, G.
Smoking activities were recognized as a main risk factor for population. Indeed, mainstream smoke aerosol is directly inhaled by smokers then delivering harmful compounds in the deepest regions of the lung. In order to reduce the potential risk of smoking, different nicotine delivery products have been recently developed. The latest device released is an electrically heated tobacco system (iQOS®, Philip Morris) which is able to warm the tobacco with no combustion. In the present paper a dimensional and volatility characterization of iQOS-generated particles was performed through particle number concentration and distribution measurements in the mainstream aerosol. The experimental analysis was carried out through a condensation particle counter, a fast mobility particle sizer and a thermo-dilution sampling system allowing aerosol samplings at different temperatures. Estimates of the particle surface area dose received by smokers were also carried out on the basis of measured data and typical smoking patterns.The particle number concentrations in the mainstream aerosols resulted lower than 1 × 108 part. cm−3 with particle number distribution modes of about 100 nm. Nonetheless, the volatility analysis showed the high amount of volatile fraction of iQOS-generated particles, indeed, samplings performed at 300 °C confirmed a significant particle shrinking phenomena (modes of about 20 nm). Anyway, the particle number concentration does not statistically decrease at higher sampling temperatures, then showing that a non-volatile fraction is always presents in the emitted particles. The dose received by smokers in terms of non-volatile amount of particle surface area was equal to 1–2 mm2 per puff, i.e. up to 4-fold larger than that received by electronic cigarette vapers.
Afficher plus [+] Moins [-]Sources and distribution of microplastics in China's largest inland lake – Qinghai Lake Texte intégral
2018
Xiong, Xiong | Zhang, Kai | Chen, Xianchuan | Shi, Huahong | Luo, Ze | Wu, Chenxi
Microplastic pollution was studied in China's largest inland lake – Qinghai Lake in this work. Microplastics were detected with abundance varies from 0.05 × 10⁵ to 7.58 × 10⁵ items km⁻² in the lake surface water, 0.03 × 10⁵ to 0.31 × 10⁵ items km⁻² in the inflowing rivers, 50 to 1292 items m⁻² in the lakeshore sediment, and 2 to 15 items per individual in the fish samples, respectively. Small microplastics (0.1–0.5 mm) dominated in the lake surface water while large microplastics (1–5 mm) are more abundant in the river samples. Microplastics were predominantly in sheet and fiber shapes in the lake and river water samples but were more diverse in the lakeshore sediment samples. Polymer types of microplastics were mainly polyethylene (PE) and polypropylene (PP) as identified using Raman Spectroscopy. Spatially, microplastic abundance was the highest in the central part of the lake, likely due to the transport of lake current. Based on the higher abundance of microplastics near the tourist access points, plastic wastes from tourism are considered as an important source of microplastics in Qinghai Lake. As an important area for wildlife conservation, better waste management practice should be implemented, and waste disposal and recycling infrastructures should be improved for the protection of Qinghai Lake.
Afficher plus [+] Moins [-]A proposed methodology for impact assessment of air quality traffic-related measures: The case of PM2.5 in Beijing Texte intégral
2018
Fontes, Tânia | Li, Peilin | Barros, Nelson | Zhao, Pengjun
Air quality traffic-related measures have been implemented worldwide to control the pollution levels of urban areas. Although some of those measures are claiming environmental improvements, few studies have checked their real impact. In fact, quantitative estimates are often focused on reducing emissions, rather than on evaluating the actual measures’ effect on air quality. Even when air quality studies are conducted, results are frequently unclear.In order to properly assess the real impact on air quality of traffic-related measures, a statistical method is proposed. The method compares the pollutant concentration levels observed after the implementation of a measure with the concentration values of the previous year. Short- and long-term impact is assessed considering not only their influence on the average pollutant concentration, but also on its maximum level. To control the effect of the main confounding factors, only the days with similar environmental conditions are analysed. The changeability of the key meteorological variables that affect the transport and dispersion of the pollutant studied are used to identify and group the days categorized as similar. Resemblance of the pollutants' concentration of the previous day is also taken into account. The impact of the road traffic measures on the air pollutants’ concentration is then checked for those similar days using specific statistical functions.To evaluate the proposed method, the impact on PM₂.₅ concentrations of two air quality traffic-related measures (M1 and M2) implemented in the city of Beijing are taken into consideration: M1 was implemented in 2009, restricting the circulation of yellow-labelled vehicles, while M2 was implemented in 2014, restricting the circulation of heavy-duty vehicles. To compare the results of each measure, a time-period when these measures were not applied is used as case-control.
Afficher plus [+] Moins [-]Environmental superbugs: The case study of Pedobacter spp Texte intégral
2018
Viana, Ana Teresa | Caetano, Tânia | Covas, Claúdia | Santos, Tiago | Mendo, Sónia
The environment is one of the main reservoirs of antibiotic resistance genes (ARGs) but multidrug resistant (MDR) environmental isolates are barely characterised. As suggested by the name, Pedobacter species have been predominantly isolated from soils, but are also recovered from water (including drinking water), chilled food, fish, compost, sludge, glaciers and other extreme environments. The susceptibility phenotype of Pedobacter lusitanus NL19 (isolated from a deactivated uranium mine), its closely related species and the genus type strain were investigated. All strains are MDR bacteria, resistant to β-lactams, colistin, aminoglycosides and ciprofloxacin. Therefore, Pedobacter spp. are likely intrinsically resistant to β-lactams (including ertapenem) and to other three classes of antibiotics. 6%–8% of their total protein-encoding genes encode a diverse collection of putative ARGs, including β-lactamases. These enzymes are highly abundant in all the other Pedobacter strains with sequenced genomes, especially class C, class B3 and class A. LUS-1 and PLN-1 were further characterised in E. coli. LUS-1 is a class A β-lactamase and it conferred an increase in the MIC of cefotaxime, albeit very low. PLN-1 is a class B3 β-lactamase with carbapenemase activity, conferring resistance to ertapenem and a 66x and 16x increase in the MIC of imipenem and meropenem, respectively. PLN-1 also hydrolyses ampicillin, 1st and 3rd generation cephalosporins, and at a lower extent cephamycins and 4th generation cephalosporins. Therefore, Pedobacter spp. encode a large and diverse arsenal of resistance mechanisms that make them environmental superbugs.
Afficher plus [+] Moins [-]