Affiner votre recherche
Résultats 861-870 de 1,506
Desorption and Transformation of Nitroaromatic (TNT) and Nitramine (RDX and HMX) Explosive Residues on Detonated Pure Mineral Phases
2012
Douglas, Thomas A. | Walsh, Marianne E. | Weiss, Charles A. Jr | McGrath, Christian J. | Trainor, Thomas P.
Explosive compounds, including known toxicants 2,4,6-trinitrotoluene (TNT) and hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), are loaded to soils during military training. Their fate in soils is ultimately controlled by soil mineralogical and biogeochemical processes. We detonated pure mineral phases with Composition B, a mixture of TNT and RDX, and investigated the fate of detonation residues in aqueous slurries constructed from the detonated minerals. The pure minerals included Ottawa sand (quartz and calcite), microcline feldspar, phlogopite mica, muscovite mica, vermiculite clay, beidellite (a representative of the smectite clay group), and nontronite clay. Energy-dispersive X-ray spectrometry, X-ray diffraction, and gas adsorption surface area measurements were made of the pristine and detonated minerals. Batch slurries of detonated minerals and deionized water were sampled for 141 days and TNT, RDX, and TNT transformation products were measured from the aqueous samples and from the mineral substrates at day 141. Detonated samples generally exhibited lower gas adsorption surface areas than pristine ones, likely from residue coating, shock-induced compaction, sintering, and/or partial fusion. TNT and RDX exhibited analyte loss in almost all batch solutions over time but loss was greater in vermiculite, beidellite, and phlogopite than in muscovite and quartz. This suggests common phyllosilicate mineral substrates could be used on military training ranges to minimize off-site migration of explosive residues. We present a conceptual model to represent the physical and chemical processes that occurred in our aqueous batches over time.
Afficher plus [+] Moins [-]Effectiveness of Low Impact Development Practices: Literature Review and Suggestions for Future Research
2012
Ahiablame, Laurent M. | Engel, Bernard A. | Chaubey, Indrajeet
Low impact development (LID) is a land development strategy for managing stormwater at the source with decentralized micro-scale control measures. Since the emergence of LID practices, they have been successfully used to manage stormwater runoff, improve water quality, and protect the environment. However, discussions still surround the effectiveness of many of these practices, resulting in a reluctance to widely adopt them. This paper highlights evidence in the literature regarding the beneficial uses of LID practices. A discussion of how LID practices are represented in hydrologic/water quality models is also provided using illustrative examples of three computational models developed with algorithms and modules to support widespread adoption of LID practices. Finally, the paper suggests directions for future research opportunities.
Afficher plus [+] Moins [-]Evaluation of On-site Wastewater Disposal Systems in Mississippi Coastal Areas
2012
Dey, Ayanangshu | Truax, Dennis D.
Groundwater and surface water contamination have been linked to inadequate or failing on-site residential wastewater treatment and disposal systems. The potential for groundwater contamination in coastal areas with shallow water tables is higher; subsequently the ability of soil, microorganisms, and vegetation to mitigate pollutants may be reduced. This study evaluated the performance of the four types of on-site wastewater treatment and disposal systems predominantly used on the Mississippi Gulf Coast. One type of system was deemed inappropriate for this region as none of the dozens of installations examined were functioning acceptably. Of the remaining three types, subsurface water samples were collected from representative sites using lysimeters and monitoring wells. Apart from general performance evaluation of these systems, seasonal changes translating into possible variation in disposal efficiencies and groundwater contamination were investigated. Statistical analysis of variations in organics (COD and BOD₅), nitrogen (TKN and NH ₄ ⁺ –N), and fecal coliform concentrations was used to identify probable deficiencies in systems tested and to recommend changes to governing standards.
Afficher plus [+] Moins [-]Numerical Modelling of Waste Stabilization Ponds: Where Do We Stand?
2012
Sah, Leena | Rousseau, Diederik P. L. | Hooijmans, Christine M.
Waste stabilization pond (WSP) technology has been an active area of research for the last three decades. In spite of its relative simplicity of design, operation and maintenance, the various processes taking place in WSP have not been entirely quantified. Lately, modelling has served as an important, low-cost tool for a better description and an improved understanding of the system. Although several papers on individual pond models have been published, there is no specific review on different models developed so far. This paper aims at filling this gap. Models are compared by focussing on their key features like the presence and comprehensiveness of a water quality sub-model in terms of aerobic/anoxic and anaerobic carbon removal and nutrient removal; the type of hydraulic sub-model used (0D, 1D, 2D or 3D); the software used for implementation and simulation; and whether or not sensitivity analysis, calibration and validation were done. This paper also recommends future directions of research in this area. In-depth study of the published models reveals a clear evolution over time in the concept of modelling, from just hydraulic empirical models to 3D ones and from simple first-order water quality models to complex ones which describe key biochemical processes as a set of mathematical equations. Due to the inherent complexity, models tend to focus only on specific aspects whilst ignoring or simplifying others. For instance, many models have been developed that either focus solely on hydrodynamics or solely on biochemical processes. Models which integrate both aspects in detail are still rare. Furthermore, it is evident from the review of the different models that calibration and validation with full-scale WSP data is also scarce. Hence, we believe that there is a need for the development of a comprehensive, calibrated model for waste stabilization ponds that can reliably serve as a support tool for the improvement and optimization of pond design and performance.
Afficher plus [+] Moins [-]Fluoride Removal from Aqueous Solutions by a Carbonaceous Material from Pyrolysis of Sewage Sludge
2012
Márquez-Mendoza, S. | Jiménez-Reyes, M. | Solache-Ríos, M. | Gutiérrez-Segura, E.
Contact time, pH, fluoride concentration, and sorbent dose effects on the removal of fluoride ions by a carbonaceous material obtained from pyrolysis of sewage sludge (CM) were evaluated. Equilibrium was reached after 18 h of contact time and the maximum sorption was found at pHeq = 7.06 ± 0.08, which corresponds to the zero charge point of the CM. The highest efficiency in the sorption system for fluoride removal (2.84 ± 0.03 mg F− [Formula: see text]) was found with 0.4 gCM L−1 and with 20 gCM L−1, 82.2 ± 0.5% of fluoride was removed. The kinetic data of the process could be fitted to the pseudosecond order and the intraparticle mass transfer diffusion models, whereas isotherm to the Langmuir–Freundlich equation. These results indicate that the mechanism is chemisorption on a heterogeneous material. Fluoride ions were best partially desorbed using a bicarbonate ions solution and the material was partially regenerated by using a solution of HCl (pH = 1).
Afficher plus [+] Moins [-]Red Mud as a Chemical Stabilizer for Soil Contaminated with Toxic Metals
2012
Feigl, Viktória | Anton, Attila | Uzigner, Nikolett | Gruiz, Katalin
We performed a 2-year microcosm study to assess the effectiveness of red mud, a by-product of bauxite processing, in stabilizing contaminated mine waste and agricultural soil. Our study used red mud from a long-term disposal area in Almásfüzitő, Hungary with a pH of 9.0. A 5% (by weight) red mud addition decreased the highly mobile, water-extractable amount of Cd and Zn by 57% and 87%, respectively, in the agricultural soil and by 73% and 79%, respectively, in the mine waste. In a laboratory lysimeter study, the addition of red mud reduced the concentration of Cd and Zn in the leachate by about two third of the original. The metal content of the leachate was below the Maximum Effect Based Quality Criteria for surface water as determined by a risk assessment in the metal-contaminated area of the Toka valley near Gyöngyösoroszi, Hungary. The addition of red mud did not increase the toxicity of the treated mine waste and soil and decreased the Cd and Zn uptake of Sinapis alba test plants by 18–29%. These results indicate that red mud applied to agricultural soil has no negative effects on plants and soil microbes and decreases the amounts of mobile metals, thus indicating its value for soil remediation.
Afficher plus [+] Moins [-]Phytoremediation of Mixed Soil Contaminants
2012
Ramamurthy, Armuthur S. | Memarian, Ramin
Tests were conducted to study the influence of non-ionic surfactants Triton X-100 and Tween 80 on the removal of mixed contaminants from a sandy soil using phytoremediation. Cd(II) and Pb(II) were used to form the inorganic contaminant, while used engine oil was selected to form the organic contaminant. The Indian mustard (Brassica juncea) plant was the plant chosen for phytoremediation of the sandy soil that contained the mixed contaminant. Thirty days after the plants were grown in the greenhouse, surfactants were applied to test pots in which the soil had been spiked with 50 mg kg−1 of CdCl2, 500 mg kg−1 of PbCl2 and 500 mg kg−1 of used engine oil. Two control tests were conducted in this study. Planted and unplanted control tests were conducted using soil without surfactants. Following these tests, the tests were completed using the plants and surfactants at different concentrations. Test results showed that Triton X-100 and Tween 80 at concentrations higher than their critical micellar concentration enhanced Cd(II) and Pb(II) accumulation in the plant roots. Further, test data showed that translocation of contaminants to plant shoots occurred for Cd(II) but not for Pb(II). At the same concentrations, Tween 80 was more effective than Triton X-100 in facilitating rhizodegradation of used engine oil. This study demonstrates that simultaneous phytoremediation of Pb(II), Cd(II) and oil can be enhanced by using non-ionic surfactant Tween 80. Leaching test results indicated that the enhanced phytoremediation could remove the mixed contaminants safely from the point of view of limiting groundwater contamination.
Afficher plus [+] Moins [-]The Effects of Fuel Evaporation and Biomass Burning on Toluene Concentrations in an Urban Area
2012
Kavouras, Ilias G. | Zielinska, Barbara
Using an automated gas chromatography system coupled with an online sampling/thermal desorption module, benzene, toluene, and their alkylated derivatives were measured in Las Vegas, Nevada from 3 July to 28 August 2008. The levels of hydrocarbons were comparable to those typically found in urban environments. Statistically significant (at 95 % level) higher concentrations were measured on mid-week days as compared with those measured during weekends. This was correlated to a local traffic pattern rather than traffic on highways. The concentrations of aromatic hydrocarbons also increased during periods when transport of smoke from wildfires in central and north California was identified by remote sensing but these levels were comparable to other days with volatile organic compounds concentrations. The high toluene/benzene ratios and the estimated photochemical age of air masses implied the contribution of other local sources. Fuel evaporation accounted for the vast majority of toluene enhanced concentrations in early July (as compared with those measured in June) for sites within the urban grid, but very little for sites located outside the urban area.
Afficher plus [+] Moins [-]Influence of Vermicompost on Dry Matter Yield and Uptake of Ni and Cd by Chamomile (Matricaria chamomilla) in Ni- and Cd-Polluted Soil
2012
Chand, Sukhmal | Pandey, Ankit | Patra, D. D.
An experiment was conducted under simulated condition to study the influence of vermicompost on growth, yield and heavy metal accumulation by chamomile (Matricaria chamomilla), an important essential oil bearing crop grown under simulated condition. Nickel and Cadmium applied at 20 mg kg−1 soil significantly enhanced the dry matter yield of the crop as compared to the control (no heavy metal). The results also revealed that addition of vermicompost (at 2.5 g kg−1 soil) enhanced the heavy metal accumulation by chamomile in metal-treated soil. Although a sizeable amount of metals were being translocated to flowers, the essential oil extracted by hydrodistillation of flowers did not contain any heavy metal. Similarly, chemical constituents of the oil of chamomile were within the range of those obtained from chamomile grown under normal soil condition.
Afficher plus [+] Moins [-]Intracellular Versus Extracellular Iron Accumulation in Freshwater Periphytic Mats Across a Mine Water Treatment Lagoon
2012
Letovsky, Erin | Heal, Kate V. | Carvalho, Laurence | Spears, Bryan M.
Despite the importance of periphyton–metal interactions in bioremediation schemes and in phosphorus (P) cycling, the processes controlling metal accumulation in periphytic mats are still poorly understood. Iron (Fe) accumulation in periphytic mats was examined across a Fe settlement lagoon receiving mine drainage in Scotland, UK, between March and June 2008. Quantification and mapping of intracellular and extracellular Fe concentrations in periphyton samples using scanning electron microscopy–energy dispersive spectroscopy suggested that Fe accumulation was dominated by the association of Fe-rich precipitates with the extracellular polymeric substances matrix, rather than biotic uptake. Intracellular Fe concentrations were significantly higher in periphyton samples exposed to the highest dissolved Fe concentrations. Neither intracellular nor extracellular Fe concentrations were significantly affected by light availability or cell density. While diatoms dominated the periphyton communities there was no significant association of diatom functional groups with Fe accumulation, indicating that community composition may not affect the function of periphytic mats with respect to Fe removal. Scale-up calculations based on the mean measured Fe accumulation rate by periphyton substrates of 0.021Â gâm−2Â day−1 showed that exposure of large surface areas of periphyton substrate in the settlement lagoon would only increase the Fe removal efficiency of the lagoon by c.1%.
Afficher plus [+] Moins [-]