Affiner votre recherche
Résultats 931-940 de 1,953
Intra-annual Pattern of Photosynthesis, Growth and Stable Isotope Partitioning in a Poplar Clone Subjected to Ozone and Water Stress
2013
Pollastrini, Martina | Desotgiu, Rosanna | Camin, Federica | Ziller, Luca | Marzuoli, Riccardo | Gerosa, Giacomo | Bussotti, Filippo
An experiment in open-top chambers was carried out in summer 2008 in Curno (northern Italy) in order to study the effects of ozone and drought stress on net photosynthesis, growth and stable isotope partitioning on cuttings of an ozone-sensitive poplar clone (Oxford). The biomass (as dry weight) of stems, leaves and roots was assessed five times during the growing season on a set of plants intended for destructive measurements (set 1). Another set of plants (set 2) was used for repeated measurements (net photosynthesis) and then destroyed at the end of the experiment. The dry weight of the stems in set 1 plants was calculated using allometric relations. The results showed that drought stress had a strong effect on all the parameters assessed. Ozone did not have any effect on biomass allocation in woody stems and stable isotope composition but reduced root/shoot ratios and caused loss of leaves during the growing season. The loss of leaves in the lower part of the crown was partly recovered with the emission of new young leaves in the upper part, thus restoring the overall photosynthetic apparatus. We conclude that the metabolic costs suffered to repair damage and support growth, and the reduction in starch reserves in the roots can compromise growth and the capacity to cope with stress factors in subsequent years.
Afficher plus [+] Moins [-]Modeling the Impacts of Spatial Heterogeneity in the Castor Watershed on Runoff, Sediment, and Phosphorus Loss Using SWAT: I. Impacts of Spatial Variability of Soil Properties
2013
Boluwade, Alaba | Madramootoo, Chandra
Spatial accuracy of hydrologic modeling inputs influences the output from hydrologic models. A pertinent question is to know the optimal level of soil sampling or how many soil samples are needed for model input, in order to improve model predictions. In this study, measured soil properties were clustered into five different configurations as inputs to the Soil and Water Assessment Tool (SWAT) simulation of the Castor River watershed (11-km² area) in southern Quebec, Canada. SWAT is a process-based model that predicts the impacts of climate and land use management on water yield, sediment, and nutrient fluxes. SWAT requires geographical information system inputs such as the digital elevation model as well as soil and land use maps. Mean values of soil properties are used in soil polygons (soil series); thus, the spatial variability of these properties is neglected. The primary objective of this study was to quantify the impacts of spatial variability of soil properties on the prediction of runoff, sediment, and total phosphorus using SWAT. The spatial clustering of the measured soil properties was undertaken using the regionalized with dynamically constrained agglomerative clustering and partitioning method. Measured soil data were clustered into 5, 10, 15, 20, and 24 heterogeneous regions. Soil data from the Castor watershed which have been used in previous studies was also set up and termed “Reference”. Overall, there was no significant difference in runoff simulation across the five configurations including the reference. This may be attributable to SWAT's use of the soil conservation service curve number method in flow simulation. Therefore having high spatial resolution inputs for soil data may not necessarily improve predictions when they are used in hydrologic modeling.
Afficher plus [+] Moins [-]Remediation of Tributyltin Contaminated Seawater by Adsorption Using nFe₃O ₄, Activated Carbon and nFe ₃O ₄/Activated Carbon Composite Material
2013
Ayanda, Olushola S. | Fatoki, Olalekan S. | Adekola, Folahan A. | Ximba, Bhekumusa J.
The remediation of tributyltin (TBT) by adsorption onto nFeO, activated carbon and nFeO/activated carbon composite material as a function of adsorbent dose, contact time, pH, stirring speed, initial TBT concentration and temperature was studied. The effect of temperature on kinetics and equilibrium of TBT sorption on the precursors and the composite was thoroughly examined. The adsorption kinetics is well fitted using a pseudo-second-order kinetic model, and the adsorption isotherm data of nFeO, activated carbon could be described by the Freundlich isotherm model whereas nFeO/activated carbon composite could be described by the Freundlich and Dubinin-Radushkevich isotherm models. Thermodynamic parameters (i.e. change in the free energy (∆ G°), the enthalpy (∆ H°) and the entropy (∆ S°)) were also evaluated. The overall adsorption process was endothermic and spontaneous in nature. The results obtained also showed that 99.9, 99.7 and 80.1 % TBT were removed from contaminated natural seawater by nFeO/activated carbon composite, activated carbon and nFeO, respectively.
Afficher plus [+] Moins [-]Assessing Molybdenum Adsorption onto an Industrial Soil and Iron Minerals
2013
Geng, Chunnu | Jian, Xuping | Su, Yuhong | Hu, Qinhong
The processes affecting adsorption of molybdenum (Mo) in alkaline industrial soils are not well known, as most research on Mo fate and transport has focused on agricultural soils. In this work, we performed studies of soil extraction, as well as sorption studies using both batch and stirred-flow cell approaches. After 60 h of extraction, we observed, even where three extractable fractions were present, 14.1 % of the bound residue was extracted by CaCl 2 solution. This indicates that the procedures recommended by the Commission of European Communities Bureau of Reference, which is targeted to metals cations, not anions due to the use of extractants at acidic pH, are not a suitable approach for assessing mobility and availability of Mo in alkaline soils. Because the observed extent of Mo adsorption onto two Fe minerals, goethite, and amorphous iron hydroxide (HFO) was 2 to 3 orders of magnitude higher than that onto the soil, soils amended with these Fe minerals were found to have a higher Mo adsorption capacity, with HFO yielding stronger sorption than goethite. The additivity principle was successfully used to predict Mo adsorption with the HFO-amended soil but failed to do so for the goethite-amended soil. The best fit sorption isotherms and estimated parameters were slightly different from batch and flow cell experiments. The Kd values of sorption coefficient in our industrial soils and Fe-minerals-amended soils ranged from 0.19 to 1.45 L/kg from both experimental approaches; this low adsorption potential renders it infeasible to immobilize Mo into the soilmatrix and reduce Mo availability by amending the soil with Fe minerals. In the future, materials with potentially high Mo adsorption capacities should be identified, screened, and characterized for permeable reactive barriers application. © Springer Science+Business Media Dordrecht 2013.
Afficher plus [+] Moins [-]Biosorption of Cadmium from Water Using Moringa (Moringa oleifera Lam.) Seeds
2013
Meneghel, Ana Paula | Gonçalves, Affonso Celso, Jr | Rubio, Fernanda | Dragunski, Douglas Cardoso | Lindino, Cleber Antonio | Strey, Leonardo
This study aimed to evaluate the efficacy of using the byproduct of Moringa oleifera Lam. seeds as an adsorbent for removal of cadmium (Cd) from contaminated water. The material characterization was performed by scanning electron microscopy, infrared spectroscopy, and point of zero charge. The effects of the adsorbent mass, solution pH, contact time, and temperature were evaluated. In the preliminary studies, the mass of adsorbent (200–1200 mg) and pH conditions (5.0, 6.0, and 7.0) were varied. The time studies were performed at 20–180 min and the temperature studies at the range of 25–65 °C. The optimal conditions of adsorption obtained were 400 mg of adsorbent mass, 7.0 pH, and 160 min contact time with the adsorbent. The isotherms of adsorption were linearized according to Langmuir, Freundlich, and Dubinin–Radushkevich (D-R) models. The results showed better fit by the Freundlich and D-R models for Cd adsorption, describing a multilayer adsorption and, according to the value of the sorption energy (E), it has chemical nature. The maximum capacity of adsorption (Q ₘ) obtained was 7.864 mg g⁻¹. For a comparative study, the activated carbon (P.A.) was used applying the same optimal conditions used in the adsorption isotherms and desorption process for the biosorbent, obtaining a Q ₘ as 32.884 mg g⁻¹. The average desorption percentage showed that adsorbents have strong interaction with the metal. Based on these results, it was concluded that the biosorbent was effective in remediation of solutions containing Cd and thus the use of this alternative material is a viable option, since it has low cost and it is a byproduct which has not undergone previous treatment.
Afficher plus [+] Moins [-]Assessment of the Impacts of Climate Change on European Ozone Levels
2013
Varotsos, K. V. | Giannakopoulos, C. | Tombrou, M.
The objective of this study is to investigate the potential impact of future climate change on ozone air quality in Europe. To provide a full assessment, simulations with the global chemical transport model GEOS-CHEM driven by the NASA Goddard Institute for Space Studies general circulation model (NASA/GISS GCM) are conducted. To isolate the effects from changes in climate and anthropogenic emissions four types of simulations are performed: (1) present-day climate and emissions (2) future climate following the IPCC Special Report on Emission Scenarios (SRES) A1B scenario and present-day anthropogenic emissions of ozone precursors (3) present-day climate and future emissions and (4) future climate and future emissions. Results indicate that climate change impact on its own leads to an increase of less than 3 ppb in western and central Europe whereas decreases are evident for the rest of the areas with the highest (about 2.5 ppb) in southeastern Europe (Italy, Greece). Increases are attributed to the increases of isoprene biogenic emissions due to increasing temperatures whereas decreases are associated with the increase of water vapor over sea which tends to decrease the lifetime of ozone as well as the increased wind speeds in the 2050 climate. When future emissions are implemented in the future climate simulations, the greatest increases are seen in the southwest and southeast Mediterranean (about 16 ppb) due to the increased isoprene biogenic emissions under higher levels of NO ₓ in the model. Decreases up to 2 ppb of ozone are shown for France, Switzerland, Northern Italy and northern Europe.
Afficher plus [+] Moins [-]Domestic Rainwater Harvesting: Microbial and Chemical Water Quality and Point-of-Use Treatment Systems
2013
de Kwaadsteniet, M. | Dobrowsky, P. H. | van Deventer, A. | Khan, W. | Cloete, T. E.
Quality of the essential commodity, water, is being compromised by contaminants originating from anthropogenic sources, industrial activities, agriculture, etc. Water scarcity and severe droughts in many regions of the world also represent a significant challenge to availability of this resource. Domestic rainwater harvesting, which involves collection and storage of water from rooftops and diverse surfaces, is successfully implemented worldwide as a sustainable water supplement. This review focuses on chemical and microbial qualities of domestic rainwater harvesting, with a particular focus on sources of chemical pollution and major pathogens associated with the water source. Incidences of disease linked to consumption and utilization of harvested rainwater are also discussed. In addition, various procedures and methods used for disinfection and treatment of harvested rainwater, such as implementation of filter systems (activated carbon, slow sand filtration, etc.), heat treatment, and chlorination, among others, are also presented.
Afficher plus [+] Moins [-]CO₂ Capture with Activated Carbons Prepared by Petroleum Coke and KOH at Low Pressure
2013
Zhu, Xupei | Fu, Yi | Hu, Gengshen | Shen, Yang | Dai, Wei | Hu, Xin
In this study, high surface area porous carbons were synthesized by chemical activation using petroleum coke as the precursor and KOH as the activation agent. The pore structure of the as-synthesized activated carbons was characterized by nitrogen adsorption, and their CO₂ sorption capacities were measured by a magnetic suspension balance at 1 and 10 bar, respectively. The effects of activated carbon preparation parameters (preheating temperature, preheating time, activation time, heating rate during the pyrolysis, and particle size of the precursor) on porous texture, CO₂ adsorption capacity, and CO₂/N₂ selectivity of the activated products were investigated. It has been found that at 1 bar, the CO₂ adsorption capacity is determined by the micropore contribution, i.e., the ratio between micropore surface area and Brunauer–Emmett–Teller (BET) surface area of the sorbents, while at 10 bar, CO₂ adsorption capacity is related to the BET surface area of the activated products. The maximum CO₂ adsorption uptake of 15.1 wt% together with CO₂/N₂ selectivity of 9.4 at 1 bar were obtained for a sample activated at 700 °C indicating its high potential in the capture of CO₂.
Afficher plus [+] Moins [-]Urban BTEX Spatiotemporal Exposure Assessment by Chemometric Expertise
2013
Astel, Aleksander Maria | Giorgini, Luigi | Mistaro, Andrea | Pellegrini, Italo | Cozzutto, Sergio | Barbieri, Pierluigi
Normative regulations on benzene in fuels and urban management strategies are expected to improve air quality. The present study deals with the application of self-organizing maps (SOMs) in order to explore the spatiotemporal variations of benzene, toluene, ethylbenzene, and xylene levels in an urban atmosphere. Temperature, wind speed, and concentration values of these four volatile organic compounds were measured after passive sampling at 21 different sampling sites located in the city of Trieste (Italy) in the framework of a multi-year long-term monitoring program. SOM helps in defining pollution patterns and changes in the urban context, showing clear improvements for what concerns benzene, toluene, ethylbenzene, and xylene concentrations in air for the 2001–2008 timeframe.
Afficher plus [+] Moins [-]Comparison of Organic Matter Removal from Synthetic and Real Wastewater in a Laboratory-Scale Soil Aquifer Treatment System
2013
Ak, Mesut | Gunduz, Orhan
In this study, the performance of a laboratory-scale soil aquifer treatment (SAT) system was investigated and treatability studies were done in order to determine organic matter removal from synthetic wastewater (SWW) and secondary treated real wastewater (RWW). The SAT system was constructed in laboratory conditions and treatability studies were conducted using soil columns, which were packed with silt loam soil samples. Each column was equipped with a series of ports at multiple depths from soil surface (10, 20, 30, 50, and 75 cm) to collect water samples. Two operational cycles were applied to represent the influence of different wetting and drying periods during wastewater application. Dissolved oxygen, chemical oxygen demand (COD), and total organic carbon (TOC) concentrations were measured in all samples. Average removal values of 61.4 % (COD) and 68.2 % (TOC) were achieved by in SWW and of 58.3 % (COD) and 51.1 % (TOC) in RWW in 55 and 25 weeks of operation, respectively. These results indicated that the performance of the columns operated with SWW was better than the performance of the columns operated with RWW. In essence, the easily biodegradable portion of organic matter was quickly consumed by microorganisms in the first 10 cm of the columns where oxygen levels peaked. Complex organic compounds that are likely to be found in RWW could thus be removed when longer residence times were achieved through the columns. When the removal performances achieved with different operating cycles were compared for each wastewater, it could be seen that longer wetting and longer drying periods yielded higher removal efficiencies in RWW and vice versa in SWW. © 2013 Springer Science+Business Media Dordrecht.
Afficher plus [+] Moins [-]