Affiner votre recherche
Résultats 931-940 de 8,010
The new CORSIA baseline has limited motivation to promote the green recovery of global aviation Texte intégral
2021
Zhang, Jingran | Zhang, Shaojun | Wu, Ruoxi | Duan, Maosheng | Zhang, Da | Wu, Ye | Hao, Jiming
The Carbon Offsetting and Reduction Scheme for International Aviation (CORSIA) is the first programme to tackle carbon dioxide (CO₂) emissions from a single industry at the global level, to realize the carbon-neutral growth of international flights from 2020 onwards. However, the COVID-19 pandemic has caused a drastic decline in the global aviation industry. The International Civil Aviation Organization (ICAO) has adjusted the CORSIA by removing 2020 emissions from the baseline, which now will only be based on 2019 emissions. We estimate that the total carbon dioxide (CO₂) emissions from global international flights decreased by 70 % from February to July 2020 compared to those in 2019. Our analysis suggests that the annual CO₂ emissions from international flights during the pilot stage of CORSIA (2021–2023) will be far below the revised baseline even if the global aviation industry could embrace an optimistic recovery. The major airline companies will have very limited motivations due to the CORSIA scheme to implement mitigation actions proactively. Therefore, more progressive actions are needed to align the industry recovery of global aviation and climate change mitigation during the post-COVID-19 period.
Afficher plus [+] Moins [-]Flood impact on the transport, transition, and accumulation of phosphorus in a reservoir: A case study of the Biliuhe Reservoir of Northeast China Texte intégral
2021
Yu, Huijuan | Xu, Shiguo | Tian, Wen | Zhu, Tongxin | Chen, Xiaoqiang
Stormflow runoff is the most important agent for phosphorus (P) input to reservoirs, as the particulates contained in runoff carry a substantial amount of P. The settling process of particulates affects the P content of water, and the distribution of particulates determines the P distribution in reservoir sediment. An understanding of flood impacts on the transport, transition, and accumulation of P in a reservoir is critical to reservoir management. In this study, water samples before and after flooding and sediment samples after flooding were collected from Biliuhe Reservoir in Northeast China. P content and load in the water and P-fractions and particle sizes of the sediments were analyzed. Results showed that total particulate P (TPP) increased sharply from 1.56 to 26.72 t after flooding, whereas dissolved organic P (DOP) decreased markedly from 3.24 to 1.17 t, which was largely caused by biological uptake directly or indirectly before flooding. Orthophosphate (PO43−) shared a similar trend with TPP, indicating that PO43− could be adsorbed onto settling particulates, helping to reduce the reactive P introduced by flooding. Reservoir sediment showed a fining trend downstream and the clay fraction exhibited an obvious correlation with P-fractions, demonstrating that the distribution of particulate matter determined P distribution in the sediment. This study also found that particulates from the largest tributary (Biliu River) were only minimally transported from its reservoir entrance to the dam because of a longer travel distance, while contrastingly, particulates from a smaller tributary (Bajia River) were maximally carried to the dam because of a shorter distance. Our fundings suggests that surface water in the reservoir should be released prior to flooding in order to mitigate control of P in the water, moreover, it is necessary to strengthen the effectiveness of pollutant control projects at the reservoir entrance of the Bajia River.
Afficher plus [+] Moins [-]Nontarget analysis reveals gut microbiome-dependent differences in the fecal PCB metabolite profiles of germ-free and conventional mice Texte intégral
2021
Li, Xueshu | Liu, Yanna | Martin, Jonathan W. | Cui, Julia Yue | Lehmler, Hans-Joachim
Mammalian polychlorinated biphenyl (PCB) metabolism has not been systematically explored with nontarget high-resolution mass spectrometry (Nt-HRMS). Here we investigated the importance of the gut microbiome in PCB biotransformation by Nt-HRMS analysis of feces from conventional (CV) and germ-free (GF) adult female mice exposed to a single oral dose of an environmental PCB mixture (6 mg/kg or 30 mg/kg in corn oil). Feces were collected for 24 h after PCB administration, PCB metabolites were extracted from pooled samples, and the extracts were analyzed by Nt-HRMS. Twelve classes of PCB metabolites were detected in the feces from CV mice, including PCB sulfates, hydroxylated PCB sulfates (OH-PCB sulfates), PCB sulfonates, and hydroxylated methyl sulfone PCBs (OH-MeSO₂-PCBs) reported previously. We also observed eight additional PCB metabolite classes that were tentatively identified as hydroxylated PCBs (OH-PCBs), dihydroxylated PCBs (DiOH-PCBs), monomethoxylated dihydroxylated PCBs (MeO-OH-PCBs), methoxylated PCB sulfates (MeO-PCB sulfates), mono-to tetra-hydroxylated PCB quinones ((OH)ₓ-quinones, x = 1–4), and hydroxylated polychlorinated benzofurans (OH-PCDF). Most metabolite classes were also detected in the feces from GF mice, except for MeO-OH-PCBs, OH-MeSO₂-PCBs, and OH-PCDFs. Semi-quantitative analyses demonstrate that relative PCB metabolite levels increased with increasing dose and were higher in CV than GF mice, except for PCB sulfates and MeO-PCB sulfates, which were higher in GF mice. These findings demonstrate that the gut microbiome plays a direct or indirect role in the absorption, distribution, metabolism, or excretion of PCB metabolites, which in turn may affect toxic outcomes following PCB exposure.
Afficher plus [+] Moins [-]Spatial variation in the amino acid profile of four macroinvertebrate taxa along a highly polluted river Texte intégral
2021
Shakya, Manisha | Silvester, Ewen | Rees, Gavin | Stitz, Leigh | Holland, Aleicia
Acid mine drainage (AMD) is one of the major environmental problems impacting aquatic ecosystems globally. We studied changes in the community composition of macroinvertebrates and amino acid (AA) profiles of dominant taxa along an AMD contamination gradient within the Dee River, Queensland, Australia to understand how AMD can affect the biomolecular composition of macroinvertebrates. Taxa richness and community composition of macroinvertebrates changed widely along the AMD gradient with significantly lower taxa richness recorded at the polluted sites compared to upstream and downstream sites. The Dipteran families: Chironomidae and Ceratopogonidae, the Odonata family Gomphidae, and the Coleoptera family Dytiscidae were the only families found at all sampling sites and were used here for AA analysis. There were significant variations in the AA profiles among the studied taxa. The AA profile of each taxon also varied among upstream, polluted and downstream sites suggesting that contamination of a river system with acid mine drainage not only alters the overall macroinvertebrate community composition but also significantly influences the AA profile of organisms that are tolerant to AMD. This study highlights the potential of using AA profiling to study the response of aquatic organisms to contamination gradients such as those associated with AMD.
Afficher plus [+] Moins [-]Sponges as bioindicators for microparticulate pollutants? Texte intégral
2021
Girard, Elsa B. | Fuchs, Adrian | Kaliwoda, Melanie | Lasut, Markus | Ploetz, Evelyn | Schmahl, Wolfgang W. | Wörheide, Gert
Amongst other threats, the world’s oceans are faced with man-made pollution, including an increasing number of microparticulate pollutants. Sponges, aquatic filter-feeding animals, are able to incorporate fine foreign particles, and thus may be a potential bioindicator for microparticulate pollutants. To address this question, 15 coral reef demosponges sampled around Bangka Island (North Sulawesi, Indonesia) were analyzed for the nature of their foreign particle content using traditional histological methods, advanced light microscopy, and Raman spectroscopy. Sampled sponges accumulated and embedded the very fine sediment fraction (<200 μm), absent in the surrounding sand, in the ectosome (outer epithelia) and spongin fibers (skeletal elements), which was confirmed by two-photon microscopy. A total of 34 different particle types were identified, of which degraded man-made products, i.e., polystyrene, particulate cotton, titanium dioxide and blue-pigmented particles, were incorporated by eight specimens at concentrations between 91 and 612 particle/g dry sponge tissue. As sponges can weigh several hundreds of grams, we conservatively extrapolate that sponges can incorporate on average 10,000 microparticulate pollutants in their tissue. The uptake of particles, however, appears independent of the material, which suggests that the fluctuation in material ratios is due to the spatial variation of surrounding microparticles. Therefore, particle-bearing sponges have a strong potential to biomonitor microparticulate pollutants, such as microplastics and other degraded industrial products.
Afficher plus [+] Moins [-]Long-term trends in nitrogen oxides concentrations and on-road vehicle emission factors in Copenhagen, London and Stockholm Texte intégral
2021
Krecl, Patricia | Harrison, Roy M. | Johansson, Christer | Targino, Admir Créso | Beddows, David C. | Ellermann, Thomas | Lara, Camila | Ketzel, Matthias
Road transport is the main anthropogenic source of NOx in Europe, affecting human health and ecosystems. Thus, mitigation policies have been implemented to reduce on-road vehicle emissions, particularly through the Euro standard limits. To evaluate the effectiveness of these policies, we calculated NO₂ and NOx concentration trends using air quality and meteorological measurements conducted in three European cities over 26 years. These data were also employed to estimate the trends in NOx emission factors (EFNOₓ, based on inverse dispersion modeling) and NO₂:NOx emission ratios for the vehicle fleets under real-world driving conditions. In the period 1998–2017, Copenhagen and Stockholm showed large reductions in both the urban background NOx concentrations (−2.1 and −2.6% yr⁻¹, respectively) and EFNOₓ at curbside sites (68 and 43%, respectively), proving the success of the Euro standards in diminishing NOx emissions. London presented a modest decrease in urban background NOx concentrations (−1.3% yr⁻¹), while EFNOₓ remained rather constant at the curbside site (Marylebone Road) due to the increase in public bus traffic. NO₂ primary emissions —that are not regulated— increased until 2008–2010, which also reflected in the ambient concentrations. This increase was associated with a strong dieselization process and the introduction of new after-treatment technologies that targeted the emission reduction of other species (e.g., greenhouse gases or particulate matter). Thus, while regulations on ambient concentrations of specific species have positive effects on human health, the overall outcomes should be considered before widely adopting them. Emission inventories for the on-road transportation sector should include EFNOₓ derived from real-world measurements, particularly in urban settings.
Afficher plus [+] Moins [-]Honey bee Apis mellifera larvae gut microbial and immune, detoxication responses towards flumethrin stress Texte intégral
2021
Yu, Longtao | Yang, Heyan | Cheng, Fuping | Wu, Zhihao | Huang, Qiang | He, Xujiang | Yan, Weiyu | Zhang, Lizhen | Wu, Xiaobo
Mites are considered the worst enemy of honey bees, resulting in economic losses in agricultural production. In apiculture, flumethrin is frequently used to control mites. It causes residues of flumethrin in colonies which may threaten honey bees, especially for larvae. Still, the impact of flumethrin-induced dysbiosis on honey bees larval health has not been fully elucidated, and any impact of microbiota for decomposing flumethrin in honey bees is also poorly understood. In this study, 2-day-old larvae were fed with different flumethrin-sucrose solutions (0, 0.5, 5, 50 mg/kg) and the dose increased daily (1.5, 2, 2.5 and 3 μL) until capped, thereafter the expression level of two immune genes (hymenoptaecin, defensin1) and two detoxication-related genes (GST, catalase) were measured. Meanwhile, the effect of flumethrin on honey bee larvae (Apis mellifera) gut microbes was also explored via 16S rRNA Illumina deep sequencing. We found that flumethrin at 5 mg/kg triggered the over expression of immune-related genes in larvae, while the larval detoxification-related genes were up-regulated when the concentrations reached 50 mg/kg. Moreover, the abundance and diversity of microbes in flumethrin-treated groups (over 0.5 mg/kg) were significantly lower than control group, but it increased with flumethrin concentrations among the flumethrin-treated groups. Our results revealed that microbes served as a barrier in the honey bee gut and were able to protect honey bee larvae to a certain extent, and reduce the stress of flumethrin on honey bee larvae. In addition, as the concentration of flumethrin increases, honey bee larvae activate their immune system then detoxification system to defend against the potential threat of flumethrin. This is the first report on the impact of flumethrin on gut microbiota in honey bees larvae. The findings revealed new fundamental insights regarding immune and detoxification of host-associated microbiota.
Afficher plus [+] Moins [-]Surface oil is the primary driver of macroinvertebrate impacts following spills of diluted bitumen in freshwater Texte intégral
2021
Black, T.A. | White, M.S. | Blais, J.M. | Hollebone, B. | Orihel, D.M. | Palace, V.P. | Rodriguez-Gil, J.L. | Hanson, M.L.
The response of freshwater invertebrates following accidental releases of oil is not well understood. This knowledge gap is more substantial for unconventional oils such as diluted bitumen (dilbit). We evaluated the effects of dilbit on insect emergence and benthic invertebrates by conducting experimental spills in limnocorrals (10-m diameter; ~100-m³) deployed in a boreal lake at the IISD-Experimental Lakes Area, Canada. The study included seven dilbit treatments (spill volumes ranged from 1.5 L [1:66,000, oil:water, v/v] to 180 L [1:590, oil:water, v/v]), two controls, and additional lake reference sites, monitored for 11 weeks. Invertebrate emergence declined at the community level following oil addition in a significantly volume-dependent manner, and by 93–100 % over the 11 weeks following the spill in the highest treatment. Dilbit altered community structure of benthic invertebrates, but not abundance. One-year post-spill and following oil removal using traditional skimming and absorption techniques, benthic richness and abundance were greater among all treatments than the previous year. These results indicate that recovery in community composition is possible following oil removal from a lake ecosystem. Research is needed concerning the mechanisms by which surface oil directly affect adult invertebrates, whether through limiting oviposition, limiting emergence, or both. The response of benthic communities to sediment tar mats is also warranted.
Afficher plus [+] Moins [-]Phosphorus deficiency stimulates dominance of Cylindrospermopsis through facilitating cylindrospermopsin-induced alkaline phosphatase secretion: Integrating field and laboratory-based evidences Texte intégral
2021
Lu, Zhe | Lei, Lamei | Lu, Yan | Peng, Liang | Han, Boping
Potentially toxic Cylindrospermopsis raciborskii blooms are of emerging concerns, as its scale is spreading from tropical regions to high latitudes, increasing the risk of aquatic biota being exposed to cylindrospermopsin (CYN). So far, CYN-producing C. raciborskii strains have only been reported in tropical waters which are commonly phosphorus (P)-deficient, where they can dominate phytoplankton communities. However, the influence of CYN on phytoplankton communities under different P status remains unclear. In this study, we first analyzed the summer observations of 120 tropical reservoirs in Guangdong Province. The proportion of potential CYN-producers was significantly higher in P-deficient and CYN-present reservoirs than that in P-sufficient or CYN-absent ones. This suggested that in P-deficient condition, the potential CYN producers might gain more advantages by the help of CYN. Then, in laboratory experiments we found that upon P deprivation, CYN did not inhibit the cell growth of other algal cells, but significantly stimulates them to secret more alkaline phosphatase (ALP) than in P-sufficient condition. Through transcriptomics, we further revealed that under such P-deficient condition, CYN remarkably induced intracellular nitrogen allocation and protein export system by activating the PIK3/Akt-cGMP/PKG signaling pathways in Scenedesmus bijugatus, thus enhancing its ALP secretion. Our study implies that CYN-induced ALP secretion is facilitated upon P deficiency, thus supporting the dominance of its producers C. raciborskii.
Afficher plus [+] Moins [-]On the impact of the COVID-19 pandemic on air quality in Florida Texte intégral
2021
El-Sayed, Marwa M.H. | Elshorbany, Yasin F. | Koehler, Kirsten
Since early 2020, the world has faced an unprecedented pandemic caused by the novel COVID-19 virus. In this study, we characterize the impact of the lockdown associated with the pandemic on air quality in six major cities across the state of Florida, namely: Jacksonville, Tallahassee, Gainesville, Orlando, Tampa, and Miami. Hourly measurements of PM₂.₅, ozone, NO₂, SO₂, and CO were provided by the US EPA at thirty sites operated by the Florida Department of Environmental Protection during mid-February to mid-April from 2015 through 2020. To analyze the effect of the pandemic, atmospheric pollutant concentrations in 2020 were compared to historic data at these cities during the same period from 2015 to 2019. Reductions in NO₂ and CO levels were observed across the state in most cities and were attributed to restrictions in mobility and the decrease in vehicle usage amid the lockdown. Likewise, decreases in O₃ concentrations were observed and were related to the prevailing NOₓ-limited regime during this time period. Changes in concentrations of SO₂ exhibited spatial variations, concentrations decreased in northern cities, however an increase was observed in central and southern cities, likely due to increased power generation at facilities primarily in the central and southern regions of the state. PM₂.₅ levels varied temporally during the study and were positively correlated with SO₂ concentrations during the lockdown. In March, reductions in PM₂.₅ levels were observed, however elevations in PM₂.₅ concentrations in April were attributed to long-range transport of pollutants rather than local emissions. This study provides further insight into the impacts of the COVID-19 pandemic on anthropogenic sources from vehicular emissions and power generation in Florida. This work has implications for policies and regulations of vehicular emissions as well as consequences on the use of sustainable energy sources in the state.
Afficher plus [+] Moins [-]