Affiner votre recherche
Résultats 941-950 de 1,953
Valuation of Unmodified Rice Husk Waste as an Eco-Friendly Sorbent to Remove Mercury: a Study Using Environmental Realistic Concentrations
2013
Rocha, Luciana S. | Lopes, Cláudia B. | Borges, J. A. | Duarte, A. C. | Pereira, E.
The present work explores the sorption capacity of an inexpensive and highly available agricultural waste, rice husk, to remove mercury using realistic concentrations of this metal. The efficiency of the process was evaluated for two initial Hg(II) concentrations, one representing the maximum value for Hg discharges from industrial sectors (0.05 mg L-1), and the other ten times higher. A very small amount of rice husk (0.25 and 0.50 g L-1) was able to reduce the Hg(II) levels in more than 80 % for an initial concentration of 0.05 mg L-1 and in more than 90 % for 0.50 mg L-1, corresponding to residual concentrations of Hg(II) of 0.048 and 0.009 mg L-1, respectively. The biosorvent was reused in further cleaning treatments, maintaining the efficiency and high performance. The sorption kinetics of the Hg-rice husk system is well fitted by the Elovich model and the diffusion models suggested that, depending on the initial Hg(II) concentrations, the sorption process can be controlled by intraparticle diffusion or by both film and intraparticle diffusion. The equilibrium data are well described by the linear isotherm and the distribution coefficient found was 36.1 L g-1. © 2013 Springer Science+Business Media Dordrecht.
Afficher plus [+] Moins [-]Removal of Metaldehyde Through Photocatalytic Reactions Using Nano-Sized Zinc Oxide Composites
2013
Doria, F. C. | Borges, A. C. | Kim, Chae-gwang | Nathan, A. | Joo, J. C. | Campos, L. C.
Metaldehyde is a selective molluscicide used in the agricultural and residential sector to control slugs and snails for a wide variety of crops. In recent years, some water companies have started monitoring drinking water supply catchments for presence of this compound, with positive and concern results. Conventional techniques are yet to achieve complete efficient and feasible removal of metaldehyde. The aim of this study was to measure the efficiency of nano-sized zinc oxide/laponite composites (NZnC) in the effective removal of metaldehyde (influent concentration of 500 μg dm⁻³) through the interaction of photocatalysis. Reaction time, pH of sample solution and NZnC mass were tested against each other using a rotatable central composite design method of experimentation. Statistical tests showed that linear effects of time, quadratic/linear effects of NZnC mass and the interaction of pH and NZnC mass proved to be the most significant variables for degrading metaldehyde. Optimal values of each variable for the highest removal efficiency were achieved, being pH equal to 10.4 and NZnC mass added equal to 28 g. The rate of reaction was then predicted by non-linear regression of four models. The best fit was provided by the modified first-order with residual kinetic model, with the apparent degradation coefficient k equal to 0.0363 min⁻¹ and the lowest remaining metaldehyde concentration observed among all runs was 278.7 μg dm⁻³. NZnC has shown to be a prominent nanotechnology for metaldehyde removal.
Afficher plus [+] Moins [-]Porewater Monitoring Under Different Layer Systems on a Sloping Surface at a Closed Mine Site
2013
Salinas Villafane, Omar Roberto | Igarashi, Toshifumi | Kurosawa, Mitsuru | Takase, Toshio
This paper addresses the geochemical evolution, volumetric water content, and temperature of porewater when constructing different soil layers to improve the surface acidic conditions on a slope at a closed mine. Three cases were set under different layer systems. Case 1 was solely composed of surface-weathered rocks. A vegetation layer was constructed on the surface rocks in case 2, whereas a top vegetation and bottom low-permeable layers were constructed on the rocks in case 3. In both cases, a soil–cement layer was constructed to prevent landslides. Porewater sampling systems and soil sensors were set at different depths to collect porewater and measure the volumetric water content and temperature. The results showed that, when no layers were applied (case 1), high concentrations of heavy metals and low pH values were observed regardless of the depth and season. When a vegetation layer (case 2) was applied, a dramatic decrease in heavy metal concentrations was observed, similar to the results in case 3. In both cases, pH values were circumneutral. Moreover, the addition of the low-permeable layer reduced the infiltration of rainfall through the layers by considering the changes in volumetric water content. Also, the results of case 1 were compared with those obtained at a flat surface under similar conditions. On the slope, the pH was more acidic, and heavy metal concentrations were higher. These suggest that the dissolution of heavy metals from the weathered rocks into the porewater is enhanced on the sloping surface due to a longer solid–liquid interaction time.
Afficher plus [+] Moins [-]Impact of Alkalisation of the Soil on the Anatomy of Norway Spruce (Picea abies) Needles
2013
Lukjanova, Aljona | Mandre, Malle | Saarman, Gerly
In this study, we evaluated the needle anatomy of Norway spruce trees growing on a territory that was exposed to different alkaline dust pollution. The anatomy of the needles of spruce growing on a polluted site in the vicinity of the Kunda cement plant (Northeast Estonia) was compared with the anatomy and physiological state of the needles from an unpolluted site. The needles from polluted sites had a significantly larger average mesophyll area and thicker epidermis. These needles also had significantly smaller average vascular bundles and xylem areas than needles from the unpolluted site. Although in the alkalised growth conditions, the mesophyll area enlarged, the number of damaged mesophyll cells increased, and as a result, the concentration of chlorophylls decreased reducing the photosynthetic potential of trees. Our study indicates that even though cement dust pollution has practically ceased in the area, the alkalised soil is affecting physiological processes in trees for a long time.
Afficher plus [+] Moins [-]Comparative Sorption of Pb and Cd by Biochars and Its Implication for Metal Immobilization in Soils
2013
Park, Jin Hee | Choppala, Girish | Lee, Seul Ji | Bolan, Nanthi | Chung, Jae Woo | Edraki, Mansour
Biochar has great potential as a soil amendment to immobilize heavy metals, thereby reducing their bioavailability. In this study, biochars derived from chicken manure and green waste were compared with commercial activated carbon (AC) and laboratory produced black carbon (BC) for the sorption of Pb and Cd. Sorption kinetics and equilibrium sorption isotherms for Pb and Cd were obtained for the char materials and the data were fitted to kinetic and sorption isotherm models. Chicken manure-derived biochar (CM) showed the highest sorption capacity for both Pb and Cd, and the Pb sorption by biochars was higher than the Cd sorption because of the precipitation of Pb with various ions released from the biochars such as carbonate, phosphate, and sulfate. The sorption data for both Pb and Cd were better represented by the pseudo-second order kinetic model than the pseudo-first order kinetic model, which indicates chemical sorption between biochar and metals. For the isotherm studies, char materials was mixed with various amount of Pb or Cd solutions and the remaining metal concentration was measured. The equilibrium sorption data followed a Langmuir isotherm with a maximum sorption capacity of 6.8-11 and 1.7-8.0 mg/g by biochars for Pb and Cd, respectively. Furthermore, CM immobilized Pb and Cd up to 93.5 and 88.4 %, respectively, while BC was not effective in the immobilization of Pb in soil. Overall, the sorption experiments in solution and the immobilization experiment in soil showed that biochars are more effective than AC in the sorption of Pb and Cd, and that they have the potential to be used as a soil amendment to remediate metal-contaminated soil. © 2013 Springer Science+Business Media Dordrecht.
Afficher plus [+] Moins [-]Endocrine Disruptors in the Xochimilco Wetland, Mexico City
2013
Díaz-Torres, E. | Gibson, R. | González-Farías, F. | Zarco-Arista, A. E. | Mazari-Hiriart, M.
The concentration of a range of endocrine disruptors: 17-β-estradiol, estrone, 17-α-ethinylestradiol, bisphenol-A, pentachlorophenol, triclosan, and butylbenzylphthalate, was analyzed by gas chromatography/mass spectrometry in the Wetland zone of Xochimilco, a periurban area of Mexico City, during an annual cycle. Samples were taken based on their level of use and by selecting sampling points related with activities such as agriculture, livestock, and urban, as well as their potential presence in water at the Cerro de la Estrella Wastewater Treatment Plant (WWTP) which supplies the majority of water (>90 %) to the study area. The compounds analyzed are present in a wide range of products from cosmetics to home care, pharmaceuticals, and subproducts of the food industry. The importance of identifying these compounds lies in the fact that they can disrupt the endocrine system of vertebrates, in particular reproductive gland function, affecting the development of organisms and their offspring. Pentachlorophenol, triclosan, bisphenol-A, butylbenzylphthalate, estrone, and 17-β-estradiol were detected in concentrations in nanogram-per-liter levels; 17-α-ethinylestradiol was always below the detection limit. The compounds showed a trend toward greater concentrations in the rainy season, probably due to the runoff that carries these compounds into the system.
Afficher plus [+] Moins [-]Synthesis of Amino-Substituted p-tert-Butylcalix[4]arene for the Removal of Chicago Sky Blue and Tropaeolin 000 Azo Dyes from Aqueous Environment
2013
Kamboh, Muhammad Afzal | Akoz, Enise | Memon, Shahabuddin | Yılmaz, Mustafa
In this study, we have reported the synthesis of new amino-substituted p-tert-butylcalix[4]arene (3) and its application for the removal of two carcinogenic azo dyes, i.e., Chicago Sky Blue (CSB) and Tropaeolin 000 (TP) from aqueous environment. The newly synthesized calix–ligand 3 is characterized by FT-IR and ¹H NMR spectroscopy as well as elemental analysis. The extraction efficiency of newly calix–ligand 3 for CSB and TP dyes from aqueous media was evaluated through liquid–liquid extraction experiments. The newly synthesized calix–ligand 3 showed outstanding extraction percentage and maximum percent extraction, i.e., 97 and 96 % of CSB and TP dyes was achieved at pH 9, respectively. During the extraction process, effect of various parameters was monitored and found that extraction is highly dependent on pH and salinity. Moreover, cyclic structure, cavity size, functional groups of the calixarene derivative, hydrophobicity, and the ionic property of guest molecules also affect the extraction efficiency. The comparative data prop up calix–ligand 3 as an effective extractant for both CSB and TP dyes.
Afficher plus [+] Moins [-]Oxidation of Azo Dyes by H₂O ₂ in Presence of Natural Pyrite
2013
Wu, Deli | Feng, Yong | Ma, Luming
Pyrite, FeS₂, is the most common sulfide mineral. The aim of this work was to assess the oxidative ability of H₂O₂ in presence of natural pyrite by employing reactive black 5, acid red GR, and cationic red X-GRL as model pollutants. The effects of H₂O₂ dosage, pyrite loading, and initial pH on reaction were investigated. The results reveal that natural pyrite-promoted H₂O₂ has a great activity in the decoloration of azo dyes. About 85 % of reactive black 5 and acid red GR can be removed within 10 min when 0.3 mM H₂O₂ and 0.3 g/L pyrite are used with initial pH values ranging from 6.32 to 6.96. The discoloration efficiencies are demonstrated to be less sensitive to the initial solution pH value. Approximately 90 % of discoloration for reactive black 5 and acid red GR can be achieved when initial pH value ranges from 2 to 10. Ion leaching experiments show that high levels of ferrous iron and sulfate can be detected when natural pyrite is added to dye solution alone. To gain an understanding of the reaction mechanism and the role of natural pyrite takes in these processes, techniques including scanning electron microscope, X-ray diffraction, and X-ray photoelectron were employed to characterize the solid sample and ion leaching experiments were also carried out. Results indicate that the determined high levels of ions have resulted from the dissolution of FeSO₄·H₂O formed on the surface of pyrite and the homogeneous Fenton reaction initiated by ferrous iron in presence of H₂O₂ is mainly responsible for the observed fast color removal rate.
Afficher plus [+] Moins [-]Impact of Water Quality Parameters on the Clogging of Vertical-Flow Constructed Wetlands Treating Urban Wastewater
2013
Sani, Abdulkadir | Scholz, Miklas | Babatunde, Akintunde | Wang, Yu
In theory, biological and physical clogging, induced as a result of potentially excessive formation of biomass from degradation of pollutants and retention of inert suspended fine particles, respectively, should result in a decrease of treatment performance. However, some wetlands are not prone to clogging in practice. The aim of this study was to compare the impact of different design (aggregate size) and operational (contact time, empty time and chemical oxygen demand [COD] loading) variables on the treatment efficiency and clogging processes. Different vertical-flow constructed wetlands were constructed and operated from June 2011 until June 2012. Data from June 2011 (setting-up period) were not used. The filter with the highest COD loading performed the worst in terms of outflow COD concentration (120 mg/l) but best in terms of COD load reduction (61 %). The wetland with the largest aggregate size had the lowest mean nitrate-nitrogen outflow concentration of 1.2 mg/l. However, the results were similar regardless of aggregate size (10 versus 20 mm) and resting time (24 versus 48 h) for most water quality variables. However, different COD inflow concentrations (COD of 146 mg/l versus COD of 312 mg/l) had a significant (p < 0.05) impact on the treatment performance for COD, ammonia-nitrogen, ortho-phosphate-phosphorus and suspended solids (SS). Serious clogging phenomena impacting negatively on the treatment performance were not observed for any columns. However, a small aggregate diameter, a short contact time, a long resting time and a low COD inflow concentration were most beneficial in reducing SS accumulation within the wetland filters. © 2013 Springer Science+Business Media Dordrecht.
Afficher plus [+] Moins [-]Immobilization of Co and Ni in Mining-Impacted Soils Using Phosphate Amendments
2013
Mignardi, Silvano | Corami, Alessia | Ferrini, Vincenzo
Synthetic hydroxyapatite (HA) and natural phosphate rock (PR) were applied to heavy metal-contaminated soils from sulfide mine areas in Sardinia and Tuscany (Italy). The application of phosphate amendments to the polluted mine waste soils reduced water-soluble concentrations of Co and Ni by about 99 %. In general, phosphate treatment was slightly more effective in reducing water solubility of Co and Ni in the Sardinian soils than in the Tuscan ones. This result suggests that the mineralogical composition of the mine waste soils may impact the effectiveness of metal immobilization. The formation of complexes of the heavy metals on the surface of phosphate grains and partial dissolution of the amendments and precipitation of heavy metal-containing phosphates are the dominant immobilization mechanisms. Between the phosphate amendments, PR was slightly less effective than HA in immobilizing Co and Ni. This result could be attributed to PR inability to provide soluble phosphate. Although with lower effectiveness, the use of PR to immobilize heavy metals from contaminated soils may reduce the risk of phosphate-induced eutrophication due to the application of amendments with highly soluble phosphate.
Afficher plus [+] Moins [-]