Affiner votre recherche
Résultats 951-960 de 4,241
Migration and degradation of swine farm tetracyclines at the river catchment scale: Can the multi-pond system mitigate pollution risk to receiving rivers?
2017
Chen, Qiuwen | Guo, Xiao | Hua, Guofen | Li, Guoliang | Feng, Ranran | Liu, Xiaoli
The study investigated the degradation behaviors of swine farm tetracyclines (TCs) at a catchment scale and explored whether multi-pond systems could be beneficial to the interception of TCs so as to reduce the pollution risk to receiving rivers. The occurrence and migration of 12 kinds of tetracycline antibiotics, including their degradation products, were studied in four swine farms of the Meijiang River basin in China. The migration paths of the TCs were examined through sampling and analyzing the soil and/or sediment at different points along the swine wastewater outlet, which included sewer, sewage pond, mixed-canal (stream and sewage), farmland (paddy and upland soil) and finally the river. TC concentrations of all collected samples were obtained by solid phase extraction followed by measurement with high-performance liquid chromatography tandem mass spectrometry. The results showed that sediment TC concentrations varied greatly in different swine farms, from mg·kg−1 to μg·kg−1 levels. TCs had different decay patterns along different migration paths, such that TCs decayed exponentially in paddy soil, while linearly in sewer and mixed canal. The concentrations of TCs and their degradation products decreased in the order: sewer sediment > sewage pond sediment > mixed-canal sediment > paddy soil > upland soil, indicating that TCs tend to be more easily intercepted and accumulated in water-sediment systems such as ponds. Therefore, the multi-pond system could be an effective way to prevent TCs from migrating into rivers. These results provided essential information for contamination control of antibiotics in aquatic environments.
Afficher plus [+] Moins [-]Distinct succession patterns of abundant and rare bacteria in temporal microcosms with pollutants
2017
Jiao, Shuo | Luo, Yantao | Lu, Mingmei | Xiao, Xiao | Lin, Yanbing | Chen, Weimin | Wei, Gehong
Elucidating the driving forces behind the temporal dynamics of abundant and rare microbes is essential for understanding the assembly and succession of microbial communities. Here, we explored the successional trajectories and mechanisms of abundant and rare bacteria via soil-enrichment subcultures in response to various pollutants (phenanthrene, n-octadecane, and CdCl2) using time-series Illumina sequencing datasets. The results reveal different successional patterns of abundant and rare sub-communities in eighty pollutant-degrading consortia and two original soil samples. A temporal decrease in α-diversity and high turnover rate for β-diversity indicate that deterministic processes are the main drivers of the succession of the abundant sub-community; however, the high cumulative species richness indicates that stochastic processes drive the succession of the rare sub-community. A functional prediction showed that abundant bacteria contribute primary functions to the pollutant-degrading consortia, such as amino acid metabolism, cellular responses to stress, and hydrocarbon degradation. Meanwhile, rare bacteria contribute a substantial fraction of auxiliary functions, such as carbohydrate-active enzymes, fermentation, and homoacetogenesis, which indicates their roles as a source of functional diversity. Our study suggests that the temporal succession of microbes in polluted microcosms is mainly associated with abundant bacteria rather than the high proportion of rare taxa. The major forces (i.e., stochastic or deterministic processes) driving microbial succession could be dependent on the low- or high-abundance community members in temporal microcosms with pollutants.
Afficher plus [+] Moins [-]Highly sensitive GQDs-MnO2 based assay with turn-on fluorescence for monitoring cerebrospinal acetylcholinesterase fluctuation: A biomarker for organophosphorus pesticides poisoning and management
2017
Deng, Jingjing | Lu, Dingkun | Zhang, Xiaolei | Shi, Guoyue | Zhou, Tianshu
In this study, we demonstrated an assay with turn-on fluorescence for monitoring cerebrospinal acetylcholinesterase (AChE) fluctuation as a biomarker for organophosphorus pesticides (OPs) poisoning and management based on single layer MnO2 nanosheets with graphene quantum dots (GQDs) as signal readout. Initially, the fluorescence of GQDs was quenched by MnO2 nanosheets mainly due to the inner filter effect (IFE). However, with the presence of reductive thiocholine (TCh), the enzymatic product, hydrolyzed from acetylthiocholine (ATCh) by AChE, the redox reaction between MnO2 and TCh occurred, leading to the destruction of the MnO2 nanosheets, and thereby IFE was diminished gradually. As a consequence, the turn-on fluorescence of GQDs with the changes in the spectrum of the dispersion constituted a new mechanism for sensing of cerebrospinal AChE. With the method developed here, we could monitor cerebrospinal AChE fluctuation of rats exposed to OPs before and after therapy, and could thereby open up the pathway to a new sensing platform for better understanding the mechanism of brain dysfunctions associate with OPs poisoning.
Afficher plus [+] Moins [-]Effects of acetylacetone on the photoconversion of pharmaceuticals in natural and pure waters
2017
Zhang, Guoyang | Wu, Bingdang | Zhang, Shujuan
Acetylacetone (AcAc) has proven to be a potent photo-activator in the degradation of color compounds. The effects of AcAc on the photochemical conversion of five colorless pharmaceuticals were for the first time investigated in both pure and natural waters with the UV/H2O2 process as a reference. In most cases, AcAc played a similar role to H2O2. For example, AcAc accelerated the photodecomposition of carbamazepine, oxytetracycline, and tetracycline in pure water. Meanwhile, the toxicity of tetracyclines and carbamazepine were reduced to a similar extent to that in the UV/H2O2 process. However, AcAc worked in a way different from that of H2O2. Based on the degradation kinetics, solvent kinetic isotope effect, and the inhibiting effect of O2, the underlying mechanisms for the degradation of pharmaceuticals in the UV/AcAc process were believed mainly to be direct energy transfer from excited AcAc to pharmaceuticals rather than reactive oxygen species-mediated reactions. In natural waters, dissolved organic matter (DOM) played a crucial role in the photoconversion of pharmaceuticals. The role of H2O2 became negligible due to the scavenging effects of DOM and inorganic ions. Interestingly, in natural waters, AcAc first accelerated the photodecomposition of pharmaceuticals and then led to a dramatic reduction with the depletion of dissolved oxygen. Considering the natural occurrence of diketones, the results here point out a possible pathway in the fate and transport of pharmaceuticals in aquatic ecosystems.
Afficher plus [+] Moins [-]Molecular toxicity of triclosan and carbamazepine to green algae Chlorococcum sp.: A single cell view using synchrotron-based fourier transform infrared spectromicroscopy
2017
Xin, Xiaying | Huang, Guohe | Liu, Xia | An, Chunjiang | Yao, Yao | Weger, Harold | Zhang, Peng | Chen, Xiujuan
Although pharmaceuticals and personal care products have been used and introduced into the environment in large quantities, little information on potential ecological risks is currently available considering their effects on living organisms. We verified the feasibility of using synchrotron-based mid-infrared (SR-FTIR) spectromicroscopy to explore in vivo toxic effects on single living Chlorococcum sp. cells. The study provided important information to achieve a better understanding of the toxic mechanism of triclosan and carbamazepine on living algae Chlorococcum sp. Triclosan and carbamazepine had distinctive toxic effects on unicellular living algae. Most strikingly, triclosan had more dramatic toxic effects on biochemical components than carbamazepine. Triclosan can affect algae primarily by inhibiting fatty acid synthesis and causing protein aggregation. The toxicity response was irreversible at higher concentrations (100.000 μM), but attenuated at lower concentrations (0.391 μM) as time passes. Carbamazepine can produce hydrophobic interactions to affect the phospholipid bilayer and work on specific proteins to disfunction the cell membrane. Carbamazepine-exposed cells developed a resistance while extending exposure time. This is the first demonstration from an ecological standpoint that SR-FTIR can provide an innovative approach to reveal the toxicity of emerging pollutants in aquatic environments.
Afficher plus [+] Moins [-]Probabilistic forecasting for extreme NO2 pollution episodes
2017
Aznarte, José L.
In this study, we investigate the convenience of quantile regression to predict extreme concentrations of NO2. Contrarily to the usual point-forecasting, where a single value is forecast for each horizon, probabilistic forecasting through quantile regression allows for the prediction of the full probability distribution, which in turn allows to build models specifically fit for the tails of this distribution.Using data from the city of Madrid, including NO2 concentrations as well as meteorological measures, we build models that predict extreme NO2 concentrations, outperforming point-forecasting alternatives, and we prove that the predictions are accurate, reliable and sharp. Besides, we study the relative importance of the independent variables involved, and show how the important variables for the median quantile are different than those important for the upper quantiles. Furthermore, we present a method to compute the probability of exceedance of thresholds, which is a simple and comprehensible manner to present probabilistic forecasts maximizing their usefulness.
Afficher plus [+] Moins [-]Biodegradation of polyester polyurethane by Aspergillus tubingensis
2017
Khan, Sehroon | Nadir, Sadia | Shah, Zia Ullah | Shah, Aamer Ali | Karunarathna, Samantha C. | Xu, Jianchu | Khān, Āfsar | Munir, Shahzad | Hasan, Fariha
The xenobiotic nature and lack of degradability of polymeric materials has resulted in vast levels of environmental pollution and numerous health hazards. Different strategies have been developed and still more research is being in progress to reduce the impact of these polymeric materials. This work aimed to isolate and characterize polyester polyurethane (PU) degrading fungi from the soil of a general city waste disposal site in Islamabad, Pakistan. A novel PU degrading fungus was isolated from soil and identified as Aspergillus tubingensis on the basis of colony morphology, macro- and micro-morphology, molecular and phylogenetic analyses. The PU degrading ability of the fungus was tested in three different ways in the presence of 2% glucose: (a) on SDA agar plate, (b) in liquid MSM, and (c) after burial in soil. Our results indicated that this strain of A. tubingensis was capable of degrading PU. Using scanning electron microscopy (SEM), we were able to visually confirm that the mycelium of A. tubingensis colonized the PU material, causing surface degradation and scarring. The formation or breakage of chemical bonds during the biodegradation process of PU was confirmed using Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR) spectroscopy. The biodegradation of PU was higher when plate culture method was employed, followed by the liquid culture method and soil burial technique. Notably, after two months in liquid medium, the PU film was totally degraded into smaller pieces. Based on a comprehensive literature search, it can be stated that this is the first report showing A. tubingensis capable of degrading PU. This work provides insight into the role of A. tubingensis towards solving the dilemma of PU wastes through biodegradation.
Afficher plus [+] Moins [-]Multiple mechanisms of heavy metal tolerance are differentially expressed in ecotypes of Artemisia fragrans
2017
Alirzayeva, Esmira | Neumann, Günter | Horst, Walter | Allahverdiyeva, Yagut | Specht, Andre | Alizade, Valida
Artemisia fragrans is a plant species with ability of growing on heavy metal-polluted soils. Ecotypes of this species naturally growing in polluted areas can accumulate and tolerate different amounts of heavy metals (HM), depending on soil contamination level at their origin. Heavy metal tolerance of various ecotypes collected from contaminated (AP, SP) and non-contaminated (BG) sites was compared by cultivation on a highly HM-contaminated river sediment and a non-contaminated agricultural control soil.Tissue-specific HM distribution was analyzed by laser ablation-inductively-coupled plasma-mass spectroscopy (LA-ICP-MS) and photosynthetic activity by non-invasive monitoring of chlorophyll fluorescence.Plant-mineral analysis did not reveal ecotype-differences in concentrations of Cd, Zn, Cu in shoots of Artemisia plants, suggesting no differential expression of root uptake or root to shoot translocation of HM. There was also no detectable rhizosphere effect on HM concentrations on the contaminated soil. However, despite high soil contaminations, all ecotypes accumulated Zn only in the concentration range of generally reported for normal growth of plants, while Cu and Cd concentrations were close to or even higher than the toxicity level for most plants. As a visible symptom of differences in HM tolerance, only the AP ecotype was able to enter the generative phase to complete its life cycle. Analysis of tissue-specific metal distribution revealed significantly lower concentrations of Cd in the leaf mesophyll of this ecotype, accumulating Cd mainly in the leaf petioles. A similar mesophyll exclusion was detectable also for Cu, although not associated with preferential accumulation in the leaf petioles. However, high mesophyll concentrations of Cd and Cu in the SP and BG ecotypes were associated with disturbances of the photosynthetic activity.The findings demonstrate differential expression of HM exclusion strategies in Artemisia ecotypes and suggest Cd and Cu exclusion from the photosynthetically active tissues as a major tolerance mechanism of the AP ecotype.
Afficher plus [+] Moins [-]Does long term low impact stress cause population extinction?
2017
Amorim, M.J.B. | Pereira, C. | Soares, A.M.V.M. | Scott-Fordsmand, J.J.
This study assessed and monitored 40 consecutive reproduction tests - multigenerational (MG) - of continuous exposure to Cd (at 2 reproduction Effect Concentrations (EC): EC10 and EC50) using the standard soil invertebrate Folsomia candida, in total 3.5 years of data were collected. Endpoints included survival, reproduction, size and metallothionein (MTc) gene expression. Further, to investigate adaptation to the toxicant, additional standard toxicity experiments were performed with the MG organisms of F6, F10, F26, F34 and F40 generations of exposure. Exposure to Cd EC10 caused population extinction after one year, whereas populations survived exposure to Cd EC50. Cd induced the up-regulation of the MTc gene, this being higher for the higher Cd concentration, which may have promoted the increased tolerance at the EC50. Moreover, EC10 induced a shift towards organisms of smaller size (positive skew), whereas EC50 induced a shift towards larger size (negative skew). Size distribution shifts could be an effect predictor. Sensitivity increased up to F10, but this was reverted to values similar to F0 in the next generations. The maximum Cd tolerance limits of F. candida increased for Cd EC50 MG. The consequences for risk assessment are discussed.
Afficher plus [+] Moins [-]Polycyclic aromatic hydrocarbons in ocean sediments from the North Pacific to the Arctic Ocean
2017
Ma, Yuxin | Halsall, Crispin J. | Xie, Zhiyong | Koetke, Danijela | Mi, Wenying | Ebinghaus, Ralf | Gao, Guoping
Eighteen polycyclic aromatic hydrocarbons (PAHs) were measured in surficial sediments along a marine transect from the North Pacific into the Arctic Ocean. The highest average Σ18PAHs concentrations were observed along the continental slope of the Canada Basin in the Arctic (68.3 ± 8.5 ng g−1 dw), followed by sediments in the Chukchi Sea shelf (49.7 ± 21.2 ng g−1 dw) and Bering Sea (39.5 ± 11.3 ng g−1 dw), while the Bering Strait (16.8 ± 7.1 ng g−1 dw) and Central Arctic Ocean sediments (13.1 ± 9.6 ng g−1 dw) had relatively lower average concentrations. The use of principal components analysis with multiple linear regression (PCA/MLR) indicated that on average oil related or petrogenic sources contributed ∼42% of the measured PAHs in the sediments and marked by higher concentrations of two methylnaphthalenes over the non-alkylated parent PAH, naphthalene. Wood and coal combustion contributed ∼32%, and high temperature pyrogenic sources contributing ∼26%. Petrogenic sources, such as oil seeps, allochthonous coal and coastally eroded material such as terrigenous sediments particularly affected the Chukchi Sea shelf and slope of the Canada Basin, while biomass and coal combustion sources appeared to have greater influence in the central Arctic Ocean, possibly due to the effects of episodic summertime forest fires.
Afficher plus [+] Moins [-]