Affiner votre recherche
Résultats 1-3 de 3
Occurrence, Genotyping, and Antibiotic Susceptibility of Cronobacter spp. in Drinking Water and Food Samples from Northeast China Texte intégral
2018
Fei, Peng | Jiang, Yichao | Gong, Shoying | Li, Ran | Jiang, Yan | Yuan, Xiujuan | Wang, Ziyuan | Kang, Huaibin | Aslam, Ali
Cronobacter species (formerly Enterobacter sakazakii) are emerging opportunistic bacterial pathogens that can infect both infants and adults. This study was conducted to isolate and genotype diverse Cronobacter species from drinking water, chilled fresh pork, powdered infant formula, instant noodles, cookies, fruits, vegetables, and dishes in Northeast China and to evaluate the antibiotic resistance and susceptibility of the isolates. Thirty-four Cronobacter strains were isolated and identified: 21 C. sakazakii isolates (61.8%), 10 C. malonaticus isolates (29.4%), 2 C. dublinensis isolates (5.9%), and 1 C. turicensis isolate (2.9%). These isolates were further divided into 15 sequence types (STs) by multilocus sequence typing. C. sakazakii ST4 (10 isolates, 29.4%), ST1 (3 isolates, 8.8%), and ST8 (3 isolates, 8.8%) and C. malonaticus ST7 (four isolates, 11.8%) were dominant. Antibiotic susceptibility testing indicated that all 34 Cronobacter isolates were susceptible to ampicillin-sulbactam, cefotaxime, ciprofloxacin, gentamicin, meropenem, tetracycline, piperacillin-tazobactam, and trimethoprim-sulfamethoxazole, 88.2% were susceptible to chloramphenicol, and 67.6% were resistant to cephalothin. The results of this study enhance knowledge about genotyping and antibiotic resistance of these Cronobacter species and could be used to prevent potential hazards caused by these strains in drinking water and various food products.
Afficher plus [+] Moins [-]Antibiotic and herbicide concentrations in household greywater reuse systems and pond water used for food crop irrigation: West Bank, Palestinian Territories Texte intégral
2020
Craddock, Hillary A. | Panthi, Suraj | Rjoub, Younes | Lipchin, Clive | Sapkota, Amir | Sapkota, Amy R.
Greywater is increasingly treated and reused for agricultural irrigation in off-grid communities in the Middle East and other water scarce regions of the world. However, there is a dearth of data regarding levels of antibiotics and herbicides in off-grid greywater treatment systems. To address this knowledge gap, we evaluated levels of these contaminants in two types of greywater treatment systems on four farms in the West Bank, Palestinian Territories. Samples of household greywater (influent, n = 23), treated greywater effluent intended for agricultural irrigation (n = 23) and pumped groundwater held in irrigation water ponds (n = 12) were collected from October 2017 to June 2018. Samples were analyzed using high performance liquid chromatography tandem mass spectrometry (LC-MS/MS) for the following antibiotics and herbicides: alachlor, ampicillin, atrazine, azithromycin, ciprofloxacin, erythromycin, linezolid, oxacillin, oxolinic acid, penicillin G, pipemidic acid, sulfamethoxazole, triclocarban, tetracycline, triflualin, and vancomycin. All tested antibiotics and herbicides were detected in greywater influent samples at concentrations ranging from 1.3 to 1592.9 ng/L and 3.1–22.4 ng/L, respectively. When comparing influent to effluent concentrations, removal was observed for azithromycin, alachlor, linezolid, oxacillin, penicillin G, pipemidic acid, sulfamethoxazole, triclocarban, and vancomycin. Removal was not observed for atrazine, ciprofloxacin, erythromycin, oxolinic acid, tetracycline, and trifluralin. Pond water also contained the majority of tested contaminants, but at generally lower concentrations. To our knowledge, this is the first description of an extensive array of antibiotics and herbicides detected in household greywater from off-grid treatment systems.
Afficher plus [+] Moins [-]Optimizing extraction and analysis of pharmaceuticals in human urine, struvite, food crops, soil, and lysimeter water by liquid chromatography-tandem mass spectrometry Texte intégral
2017
Mullen, Rachel A. | Wigginton, Krista R. | Noe-Hays, Abraham | Nace, Kim | Love, Nancy G. | Bott, Charles B. | Aga, Diana S.
Human urine is an abundant, renewable resource that can be used as a valuable source of fertilizer because it is rich in nitrogen, phosphorus and potassium. As fertilizers derived from urine become more widely used, it is important to understand how excreted pharmaceuticals are transported from urine to the environment. Many pharmaceuticals are excreted from the human body in their native form; therefore, when urine is used as a fertilizer, biologically active pharmaceuticals can be released into the environment. The goal of this study was to develop sensitive methods for the analysis of pharmaceuticals in urine, struvite, lysimeter water, soil, and food crops using liquid chromatography with tandem mass spectrometry (LC-MS/MS). The ability to detect low levels of pharmaceutical residues in various environmental matrices will aid in assessing the potential risks associated with the field application of urine that is used to fertilize croplands. The optimized method reported in this paper, which utilizes solid phase extraction for sample clean-up and pre-concentration, offers analyte recoveries ranging from 29 to 112 percent, and detection limits ranging from 0.89 ng L⁻¹ to 0.0047 μg g⁻¹. The optimized extraction method provides intra-day and inter-day reproducibility of less than 10% for all analytes in all matrices investigated, with the exception for ciprofloxacin in urine. The use of isotope dilution for quantification proved necessary to compensate for matrix effects, especially in urine where matrix effects can range from about 21% to 79%. Overall, the method described here is robust and widely applicable to various types of environmental samples.
Afficher plus [+] Moins [-]