Affiner votre recherche
Résultats 1-2 de 2
Prolonged maintenance of water balance by adult females of the American spider beetle, Mezium affine Boieldieu, in the absence of food and water resources
2005
Benoit, J.B. | Yoder, J.A. | Rellinger, E.J. | Ark, J.T. | Keeney, G.D.
Moisture requirements were evaluated for female adults of spider beetles Mezium affine Boieldieu and Gibbium aequinoctiale Boieldieu to determine how they are differentially adapted for life in a dry environment. Features showing extreme desiccation resistance of M. affine were an impermeable cuticle wherein activation energies (43 kJ/mol) were suppressed, daily water losses as little as 0.3%/day with an associated group effect, a low 64% water content and an impressive ability to survive nearly 3 months with no food and water. Behaviorally, the extended period of water stress and fasting was marked by long intervals of physical inactivity (quiescence), as though dead. These characteristics emphasizing water retention rather than gain are shared by G. aequinoctiale and reflect a typical xerophilic water balance profile. Water uptake was restricted to imbibing liquid, as evidenced by uptake of dye-stained droplets of free water and a critical equilibrium activity of 1.00a(v), where the inability to absorb water vapor from the air fails to equilibrate declining water levels (gain not equal to loss) except at saturation. Four-fold reduction in survival time within dry air and accelerated water loss rates with high activation energies for female adults of the closely related winged Prostephanus truncatus (Say) suggest that the enhanced water conservation of spider beetles is due, in part, to fusion of their elytra supplemented by entering into quiescence.
Afficher plus [+] Moins [-]Role of juvenile hormone in the hypermetabolic production of water revealed by the O2 consumption and thermovision images of larvae of insects fed a diet of dry food Texte intégral
2013
Karel SLÁMA | Jan LUKÁŠ
The young larvae of insects living on dry food produce large amounts of water by the metabolic combustion of dietary lipids. The metabolic production of water needed for larval growth, previously known as hypermetabolic responses to juvenile hormone (JH), is associated with a 10- to 20-fold increase in the rate of O2 consumption (10,000 µl O2/g/h in contrast to the usual rate of 500 µl O2/g/h). Growing and moulting larvae are naturally hypermetabolic due to the endogenous release of JH from the corpora allata. At the last, larval-pupal or larval-adult moult there is no JH and as a consequence the metabolic rate is much lower and the dietary lipid is not metabolized to produce water but stored in the fat body. At this developmental stage, however, a hypermetabolic response can be induced by the exogenous treatment of the last larval instars with a synthetic JH analogue. In D. vulpinus, the JH-treated hypermetabolic larvae survive for several weeks without moulting or pupating. In T. castaneum and G. mellonella, the JH-treated hypermetabolic larvae moult several times but do not pupate. All these larvae consume dry food and the hypermetabolic response to JH is considered to be a secondary feature of a hormone, which is produced by some subordinated endocrine organ. The organ is most probably the controversial prothoracic gland (PG), which is a typical larval endocrine gland that only functions when JH is present. According to our hypothesis, PG activated by JH (not by a hypothetical PTTH) releases an adipokinetic superhormone, which initiates the conversion of dietary lipid into metabolic water. This type of metabolic combustion of dietary lipid produces large quantities of endothermic energy, which is dissipated by the larvae in the form of heat. Thermovision imaging revealed that the body of hypermetabolic larvae of G. mellonella can be as hot as 43°C or more. In contrast, the temperature of "cold" normal last instar larvae did not differ significantly from that of their environment. It is highly likely that thermovision will facilitate the elucidation of the currently poorly understood hormonal mechanisms that initiate the production of metabolic water essential for the survival of insects that live in absolutely dry conditions.
Afficher plus [+] Moins [-]