Affiner votre recherche
Résultats 1-5 de 5
Cryptosporidium: Detection in water and food Texte intégral
2010
Smith, H. V. (Huw V) | Nichols, Rosely A.B.
Water and food are major environmental transmission routes for Cryptosporidium, but our ability to identify the spectrum of oocyst contributions in current performance-based methods is limited. Determining risks in water and foodstuffs, and the importance of zoonotic transmission, requires the use of molecular methods, which add value to performance-based morphologic methods. Multi-locus approaches increase the accuracy of identification, as many signatures detected in water originate from species/genotypes that are not infectious to humans. Method optimisation is necessary for detecting small numbers of oocysts in environmental samples consistently, and further work is required to (i) optimise IMS recovery efficiency, (ii) quality assure performance-based methods, (iii) maximise DNA extraction and purification, (iv) adopt standardised and validated loci and primers, (v) determine the species and subspecies range in samples containing mixtures, and standardising storage and transport matrices for validating genetic loci, primer sets and DNA sequences.
Afficher plus [+] Moins [-]Biosensors for rapid detection of bacterial pathogens in water, food and environment Texte intégral
2022
Nnachi, Raphael Chukwuka | Sui, Ning | Ke, Bowen | Luo, Zhenhua | Bhalla, Nikhil | He, Daping | Yang, Zhugen
Conventional techniques (e.g., culture-based method) for bacterial detection typically require a central laboratory and well-trained technicians, which may take several hours or days. However, recent developments within various disciplines of science and engineering have led to a major paradigm shift in how microorganisms can be detected. The analytical sensors which are widely used for medical applications in the literature are being extended for rapid and on-site monitoring of the bacterial pathogens in food, water and the environment. Especially, within the low-resource settings such as low and middle-income countries, due to the advantages of low cost, rapidness and potential for field-testing, their use is indispensable for sustainable development of the regions. Within this context, this paper discusses analytical methods and biosensors which can be used to ensure food safety, water quality and environmental monitoring. In brief, most of our discussion is focused on various rapid sensors including biosensors and microfluidic chips. The analytical performances such as the sensitivity, specificity and usability of these sensors, as well as a brief comparison with the conventional techniques for bacteria detection, form the core part of the discussion. Furthermore, we provide a holistic viewpoint on how future research should focus on exploring the synergy of different sensing technologies by developing an integrated multiplexed, sensitive and accurate sensors that will enable rapid detection for food safety, water and environmental monitoring.
Afficher plus [+] Moins [-]Mechanistic aspects of biologically synthesized silver nanoparticles against food- and water-borne microbes Texte intégral
2015
Krishnaraj, Chandran | Harper, Stacey L. | Choe, Ho Sung | Kim, Kwang-Pyo | Yun, Soon-Il
In the present study, silver nanoparticles (AgNPs) synthesized from aqueous leaves extract of Malva crispa and their mode of interaction with food- and water-borne microbes were investigated. Formation of AgNPs was conformed through UV–Vis, FE-SEM, EDS, AFM, and HR-TEM analyses. Further the concentration of silver (Ag) in the reaction mixture was conformed through ICP-MS analysis. Different concentration of nanoparticles (1–3 mM) tested to know the inhibitory effect of bacterial pathogens such as Bacillus cereus, Staphylococcus aureus, Listeria monocytogenes, Escherichia coli, Salmonella typhi, Salmonella enterica and the fungal pathogens of Penicillium expansum, Penicillium citrinum, Aspergillus oryzae, Aspergillus sojae and Aspergillus niger. Interestingly, nanoparticles synthesized from 2 to 3 mM concentration of AgNO₃ showed excellent inhibitory activities against both bacterial and fungal pathogens which are well demonstrated through well diffusion, poison food technique, minimum inhibitory concentration (MIC), and minimum fungicidal concentration (MFC). In addition, mode of interaction of nanoparticles into both bacterial and fungal pathogens was documented through Bio-TEM analysis. Further the genomic DNA isolated from test bacterial strains and their interaction with nanoparticles was carried out to elucidate the possible mode of action of nanoparticles against bacteria. Interestingly, AgNPs did not show any genotoxic effect against all the tested bacterial strains which are pronounced well in agarose gel electrophoresis and for supporting this study, UV–Vis and Bio-TEM analyses were carried out in which no significant changes observed compared with control. Hence, the overall results concluded that the antimicrobial activity of biogenic AgNPs occurred without any DNA damage.
Afficher plus [+] Moins [-]Antioxidant and pro-oxidant in vitro evaluation of water-soluble food-related botanical extracts Texte intégral
2011
Damien Dorman, H.J. | Hiltunen, Raimo
The total phenol content, antioxidant and pro-oxidant activities of deodourised, water-soluble aniseed, basil, caraway, cardamon, fennel, ginger, juniper, laurel and parsley extracts were estimated using a number of in vitro assays. The laurel and basil extracts contained the highest phenol content of 107.3±1.3 GAE [mg gallic acid equivalents/g (dry wt.) extract] and 98.5±1.4 GAE, respectively, whilst the ginger extract contained the lowest content at 14.9±0.9 GAE. Juniper, laurel and basil extracts were consistently better than the other extracts in terms of iron(III) reducing activity, inhibition of β-carotene-linoleate thermal co-oxidation and N,N-dimethyl-p-phenylenediamine and hydroxyl radical scavenging assays. Potential pro-oxidant activities of the extracts were assessed using both DNA and bovine serum albumin (BSA) as substrates. None of the extracts were capable of stimulating hydroxyl-mediated DNA fragmentation; however, the extracts could be categorised in the protein oxidation assay as extracts with (i) no significant (p>0.05) effect, (ii) a significant (p<0.05) protective effect or (iii) a significant (p<0.05) pro-oxidant effect. The extracts from juniper, laurel and basil had a pro-oxidative effect upon BSA at a dose of 2mg/ml, as estimated from the degree of carbonylation measured.
Afficher plus [+] Moins [-]The use of real-time PCR to study Penicillium chrysogenum growth kinetics on solid food at different water activities Texte intégral
2014
Arquiza, J.M.R Apollo | Hunter, Jean
Fungal growth on solid foods can make them unfit for human consumption, but certain specialty foods require fungi to produce their characteristic properties. In either case, a reliable way of measuring biomass is needed to study how various factors (e.g. water activity) affect fungal growth rates on these substrates. Biochemical markers such as chitin, glucosamine or ergosterol have been used to estimate fungal growth, but they cannot distinguish between individual species in mixed culture. In this study, a real-time polymerase chain reaction (rt-PCR) protocol specific for a target fungal species was used to quantify its DNA while growing on solid food. The measured amount of DNA was then related to the biomass present using an experimentally determined DNA-to-biomass ratio. The highly sensitive rt-PCR biomass assay was found to have a wide range, able to quantify the target DNA within a six orders-of-magnitude difference. The method was used to monitor germination and growth of Penicillium chrysogenum spores on a model porous food (cooked wheat flour) at 25°C and different water activities of 0.973, 0.936, and 0.843. No growth was observed at 0.843, but lag, exponential and stationary phases were identified in the growth curves for the higher water activities. The calculated specific growth rates (μ) during the exponential phase were almost identical, at 0.075/h and 0.076/h for aw=0.973 and 0.936, respectively. The specificity of the method was demonstrated by measuring the biomass of P. chrysogenum while growing together with Aspergillus niger on solid media at aw=0.973.
Afficher plus [+] Moins [-]