Affiner votre recherche
Résultats 1-6 de 6
Surface water connectivity controls fish food web structure and complexity across local- and meta-food webs in Arctic Coastal Plain lakes Texte intégral
2019
Laske, Sarah M. | Rosenberger, Amanda E. | Wipfli, Mark S. | Zimmerman, Christian E.
The need for theories that address food web assembly and complexity over multiple spatial scales are critical to understanding their stability and persistence. In a meta-food web – an integrated network of local food webs – spatial heterogeneity in physical processes may have profound effects on food web function and energy flow. In the Arctic, surface water connectivity plays a vital role in determining fish assemblage composition, and potentially, food web structure. We examined lentic food web complexity associated with heterogeneity in surface water connectivity among Arctic lakes at the local scale, by contrasting lakes over a stream-lake connectivity gradient, and at the regional scale, by contrasting two locations with different surface water conditions (i.e., wet and dry) on the Arctic Coastal Plain of Alaska. Among lakes and across locations, increased hydrologic connectivity between streams and lakes increased the number of fish species and increased the complexity of the food web. The interaction of the region's hydrologic connectivity, local stream-lake connections, and the trophic niches of relevant fish species produced integrated, complex meta-food webs. Fully understanding mechanisms that support meta-food web stability are crucial when assessing future changes to Arctic stream-lake networks and the function and persistence of aquatic food webs.
Afficher plus [+] Moins [-]Revealing the bilateral dependencies and policy implication of food production of Japan and China: From the perspective of Food-Energy-Water nexus Texte intégral
2019
Ju, Yiyi
The world food price crisis in 2007/08 has aroused worldwide attention to the global food price volatility and food self-sufficiency issues. This paper modelled the entire environment of food production and transaction from a holistic view by a Food-Energy-Water (FEW) nexus in order to reveal the hidden connections related to the food self-sufficiency issue, including the interdependencies of food production with its restraining factors (hybrid energy, hybrid water), other production sectors, and international exchanges. This paper mapped all direct and indirect flows in the FEW nexus and projected a potential Emission Trading Scheme (ETS) to figure out the impacts of policies on FEW nexus flows, nexus robustness, total input of all sectors, and household expenditures in Japan and China. The results show that the pattern of food-related extraction flows was more imbalanced than the pattern of hybrid energy flows, due to the high dependence of Japan on the food supply of China (16.11% of total food-related extractions). An ETS may increase Japan’s total household expenditure on imported goods from China in the fields of sugar refining (1.3096%), processing vegetable oils and fats (0.1164%), processing of meat cattle (0.1010%), as well as slightly decrease the system robustness of the total nexus.
Afficher plus [+] Moins [-]Quantifying the Urban Food–Energy–Water Nexus: The Case of the Detroit Metropolitan Area Texte intégral
2018
Liang, Sai | Qu, Shen | Zhao, Qiaoting | Zhang, Xilin | Daigger, Glen T. | Newell, Joshua P. | Miller, Shelie A. | Johnson, Jeremiah X. | Love, Nancy G. | Zhang, Lixiao | Yang, Zhifeng | Xu, Ming
The efficient provision of food, energy, and water (FEW) resources to cities is challenging around the world. Because of the complex interdependence of urban FEW systems, changing components of one system may lead to ripple effects on other systems. However, the inputs, intersectoral flows, stocks, and outputs of these FEW resources from the perspective of an integrated urban FEW system have not been synthetically characterized. Therefore, a standardized and specific accounting method to describe this system is needed to sustainably manage these FEW resources. Using the Detroit Metropolitan Area (DMA) as a case, this study developed such an accounting method by using material and energy flow analysis to quantify this urban FEW nexus. Our results help identify key processes for improving FEW resource efficiencies of the DMA. These include (1) optimizing the dietary habits of households to improve phosphorus use efficiency, (2) improving effluent-disposal standards for nitrogen removal to reduce nitrogen emission levels, (3) promoting adequate fertilization, and (4) enhancing the maintenance of wastewater collection pipelines. With respect to water use, better efficiency of thermoelectric power plants can help reduce water withdrawals. The method used in this study lays the ground for future urban FEW analyses and modeling.
Afficher plus [+] Moins [-]Integrating embedded resources and network analysis to understand food-energy-water nexus in the US Texte intégral
2020
Mahjabin, Tasnuva | Mejía, Alfonso | Blumsack, Seth | Grady, Caitlin
To find a sustainable way of supplying food, energy, and water (FEW) while simultaneously protecting the ecosystem services, it is imperative to build greater understanding on interconnections, feedback, and dependencies in FEW systems. The FEW nexus has developed as a field of study to provide frameworks for such pursuits. Building upon previous work in this paper, we analyze FEW resources through the development of a virtual water trade network using the US network of food and energy flows and their associated virtual water contents. Our main objective is to provide a quantitative estimation of the virtual water embodied in the internal US food and energy transfers and analyze the associated interdependencies of these connections. Three methodological advancements demonstrate the novelty of this work. First, unlike existing FEW virtual water modeling studies, our work separates corn into both food and energy resources accounting for the significant use of corn for ethanol in the United States. Second, we apply recently published water consumption values for energy commodities confirming the variation between previous water footprint studies and these more accurate accounting procedures. Third, we examine network properties of the trade flows furthering FEW nexus literature and showcasing avenues for future research. Our results indicate that accounting for the transfer of corn from the food commodity network to the energy commodity network leads to a virtual water footprint decline of 11% for the cereal grain virtual water network. Additionally, the food trade network shows highly dense and connected properties compared to the energy trade network. Finally, our results indicate that transfers of water footprints between water scarce and water abundant states differ substantially between food and energy virtual water networks. A quantifiable understanding of the water footprint network embodied in the food and energy trade can help in developing policies for promoting conservation and efficiency in the context of the FEW nexus.
Afficher plus [+] Moins [-]Pelagic energy flow supports the food web of a shallow lake following a dramatic regime shift driven by water level changes Texte intégral
2021
Across the globe, lake ecosystems are exposed to a variety of human disturbances. A notable example is shallow lakes where human-induced eutrophication or water level fluctuation may result in a switch from a clear-water, macrophyte-dominated state to a turbid, phytoplankton-dominated state. Yet, few investigations have described synchronous changes in biotic assemblage composition and food web framework under such a shift between alternative states. We used stable carbon and nitrogen isotopes to test the extent to which switching from macrophyte to phytoplankton dominance in Lake Gucheng, triggered by a water level increase, would alter ecosystem structure and change the basal resources supporting the food web. We found that invertebrates and fish compensated for a reduction of macrophyte and epiphyte resources by deriving more energy from the alternative pelagic energy channel, where benthic invertebrates act as crucial links between primary producers and higher consumers by transporting δ¹³C-depleted pelagic algae to the benthic zone. Although consumers can respond to large shifts in energy allocation and stabilize food web dynamics through their ability to feed across multiple energy pathways, our study suggest that energy subsidies may promote trophic cascades and enhance the stability of the turbid regime.
Afficher plus [+] Moins [-]Effects of resource-oriented waste management on optimizing water-food-energy nexus in rural China: A material and energy flow analysis Texte intégral
2020
Xu, Mingjie | Fan, Bin | Zhang, Yu | Li, Ao | Li, Yahui | Lv, Minghuan | Shi, Yunpeng | Zhu, Shikun | Qian, Tingting
The waste management as the interface between human daily life and environment is an important part in rural region. However, the micro-scale process analysis from the perspective of an integrated rural water-food-energy system has not been well investigated to reveal the effects brought by waste management on local environment. The lack of relevant evidence is a major barrier to realize the specific quantitative impacts of distinct waste management systems and the importance of sustainable waste management for local area. In this study, a material and energy flow analysis based on processes is presented in a micro-scale to make systematical comparison between end-pipe-treatment waste management and modern resource-oriented waste management. The results indicated that waste management notably affects the nitrogen and phosphorus flow in rural areas. Moreover, the resource-oriented system can obviously optimize the local water-food-energy nexus in terms of energy recovery and nutrient consumption. Based on the quantity analysis, chemical fertilizer is also found inevitable to guarantee the food supply because of the element system loss in various paths. Besides, the simultaneous optimum point of different nutrient elements is difficult to achieve due to their distinct transfer mechanisms. Our results can help policymakers and publics make better choice in waste management strategy.
Afficher plus [+] Moins [-]