Affiner votre recherche
Résultats 1-2 de 2
Water and Food Security in the Arabian Peninsula: Struggling for more actions Texte intégral
2018
azaiez ouled belgacem | mohamed ben-salah | ahmed moustafa | arash nejatian
Food security is a critical issue for the Arabian Peninsula countries due fast population growth, reduced domestic food production and the tighter global food markets because of trading partners�?? strained export surpluses. Water scarcity is a major concern for the AP. The renewable water resources per capita is considered the lowest in the world and has decreased from 1250 m3 in 1950 to 76.2 m3 in 2014. Furthermore, the projected water demand in AP for the year 2025 will exceed the double of the current groundwater availability, estimated at 8030M m3. In response to the alarming water situation, ICARDA in collaboration with the National Agricultural and Extension Systems (NARES) has established a program in AP, which has developed, evaluated, and introduced technology packages that empower growers to produce high-quality crops with less water. These technologies include: 1) the integrated forage production system based on indigenous plant species; 2) the introduction of spineless cactus as animal feed; and 3) protected agriculture with associated developed technologies such as soilless culture (hydroponics). Similarly, ICARDA and NARS works on date palm has resulted in improving water and land productivity for date production. Such water saving technology packages are being transferred to farmers in AP region through ICARDA and National scientists and extension agents. Conclusively, a noticeable impact on the on-farm water management through the increased productivity per unit of water and land created. The demand for more applied research in the region is inevitable to ensure an adequate level of food security based on Climate-smart agriculture practice | Azaiez Ouled Belgacem, Arash Nejatian, Mohamed Ben-Salah, Ahmed Moustafa. (31/8/2017). Water and Food Security in the Arabian Peninsula: Struggling for more actions. Journal of Experimental Biology and Agricultural Sciences, 5, pp. 550-561.
Afficher plus [+] Moins [-]The use of nutrient reduction and food-web management to improve water quality in the deep stratifying Wupper Reservoir, Germany Texte intégral
2008
Schärf, Wilfried
Only a combination of nutrient load abatement and food-web management proved efficient for the management of water quality in the deep stratifying Wupper Reservoir. Reduction of nutrient loading, was completed in winter 1992/1993, but resulted only in reduced winter/spring mixing of phosphorus concentrations. Since the capacity of the diatom spring bloom to remove nutrients from the trophogenic layer of this slightly eutrophic water-body was never exhausted, the surplus of total phosphorus available to support summer algal growth remained unchanged. Thus, nutrient reduction alone did not improve the water quality, as expected. Subsequent replacement of the smaller Daphnia cucullata by the larger Daphnia galeata-hyalina complex that was attributable to successful food-web management did, however, result in a shift from a turbid to a clear water regime in 1999. Clearly, the zooplankton community, and therefore food-web structure, played an integral role in nutrient recycling and in the repartitioning of the phosphorus pool. As diatom settling and grazing became much more tightly linked with the appearance of the larger-bodied Daphnia galeata-hyalina complex, which exploits lower-level food resources as early as May, daphnids increasingly acted as a sink for phosphorus. This increased export fluxes out of the pelagic zone and leaves a smaller surplus of total phosphorus to support the accumulation of summer algae. Consequently, water transparency and total chlorophyll concentrations in summer improved with food-web restructuring, indicating real oligotrophication of Wupper Reservoir driven by internal feedbacks.
Afficher plus [+] Moins [-]