Affiner votre recherche
Résultats 1-10 de 13
Environmental determinants of total evaporative water loss in birds at multiple temperatures | Determinantes ambientales de pérdida total de agua por evaporación en aves a múltiples temperaturas Texte intégral
2019
Song, Soorim | Beissinger, Steven R.
Endotherms dissipate heat to the environment to maintain a stable body temperature at high ambient temperatures, which requires them to maintain a balance between heat dissipation and water conservation. Birds are relatively small, contain a large amount of metabolically expensive tissue, and are mostly diurnal, making them susceptible to physiological challenges related to water balance and heat dissipation. We compiled total evaporative water loss (TEWL) measurements for 174 species of birds exposed to different temperatures and used comparative methods to examine their relationships with body size, ambient temperature, precipitation, diet, and diel activity cycle. TEWL in the thermoneutral zone (TNZ) was associated primarily with body mass and activity phase. Larger and more active-phase birds, with their higher metabolic rates, lost more water through evaporation than smaller, resting-phase birds, particularly at higher thermal exposures. However, maximum temperature of the natural habitat became an important determinant of TEWL when birds were exposed to temperatures exceeding the TNZ. Species from hotter climates exhibited higher TEWL. Adaptation to arid climates did not restrict evaporative water loss at thermal conditions within the TNZ, but promoted evaporative water loss at exposures above the TNZ. The TEWL of granivores, which ingest food with low water content, differed little from species with other food habitats under all thermal conditions. The effects of environmental covariates of TEWL were dissimilar across thermal exposures, suggesting no evidence for a tradeoff between water conservation in the TNZ and heat dissipation at exposure to higher temperatures. Thus, birds may be able to acclimate when climate change results in the need to increase heat dissipation due to warming, except perhaps in hot, arid environments where species will need to depend heavily upon evaporative cooling to maintain homeothermy.
Afficher plus [+] Moins [-]Effect of temperature variations on the travel time of infiltrating water in the Amsterdam Water Supply Dunes (the Netherlands) | Effet des variations de la température sur le temps de transit de l’eau d’infiltration dans les Dunes d’Approvisionnement en Eau d‘Amsterdam (Pays Bas) Efecto de las variaciones de temperatura en el tiempo de tránsito de las aguas infiltradas en las Dunas para el Abastecimiento de Agua en Ámsterdam (Países Bajos) 温度变化对阿姆斯特丹供水沙丘(荷兰)入渗水运移时间的影响 Efeito das variações da temperatura no tempo de deslocamento da água infiltrada nas Dunas de Armazenamento de Água em Amsterdam (Países Baixos) Texte intégral
2019
Liu, Sida | Zhou, Yangxiao | Kamps, Pierre | Smits, Frank | Olsthoorn, Theo
Travel time is one of the important criteria in the design of managed aquifer recharge systems for securing good drinking water quality. Traditionally, groundwater travel time has been modelled without considering the effect of temperature. In this study, a cross-sectional heat transport model was constructed for the Amsterdam dune filtration system (in the Netherlands) to analyse the effect of temperature on groundwater travel times. A groundwater flow model, a chloride transport model, and a heat transport model were iteratively calibrated with measured groundwater levels, chloride concentrations, and temperature series in order to improve model calibration and reduce model uncertainty. The coupled flow and heat transport model with temperature-dependent density and viscosity provided more accurate estimation of travel times. The results show that seasonal temperature fluctuations in the source water in the infiltration pond cause temperature variations in the shallow groundwater. Viscosity is more sensitive to temperature changes and has a larger effect on groundwater travel times. Groundwater travel time in the shallow sand aquifer increases from 60 days when computed with the traditional groundwater flow model to 73 days in the winter season and 95 days in the summer season when computed with the coupled model. Longer travel time is beneficial for water quality improvement. Thus, it is important to consider the effect of temperature variations on groundwater travel times for the design and operation of managed aquifer recharge systems.
Afficher plus [+] Moins [-]Analytical solutions for transient temperature distribution in a geothermal reservoir due to cold water injection | Solutions analytiques pour la distribution transitoire de la température due à l’injection d’eau froide dans un réservoir géothermal Soluciones analíticas para una distribución transitoria de temperatura en un reservorio geotérmico debido a la inyección de agua fría 地热储由于冷水注入造成瞬时温度分布的解析解 Soluções analíticas para a distribuição de temperatura em regime transitório num reservatório geotérmico em resposta à injeção de água fria Texte intégral
2014
Ganguly, Sayantan | Mohan Kumar, M. S.
An analytical solution to describe the transient temperature distribution in a geothermal reservoir in response to injection of cold water is presented. The reservoir is composed of a confined aquifer, sandwiched between rocks of different thermo-geological properties. The heat transport processes considered are advection, longitudinal conduction in the geothermal aquifer, and the conductive heat transfer to the underlying and overlying rocks of different geological properties. The one-dimensional heat transfer equation has been solved using the Laplace transform with the assumption of constant density and thermal properties of both rock and fluid. Two simple solutions are derived afterwards, first neglecting the longitudinal conductive heat transport and then heat transport to confining rocks. Results show that heat loss to the confining rock layers plays a vital role in slowing down the cooling of the reservoir. The influence of some parameters, e.g. the volumetric injection rate, the longitudinal thermal conductivity and the porosity of the porous media, on the transient heat transport phenomenon is judged by observing the variation of the transient temperature distribution with different values of the parameters. The effects of injection rate and thermal conductivity have been found to be profound on the results.
Afficher plus [+] Moins [-]A persistent local thermal anomaly in the Ahorn gneiss recharged by glacier melt water (Austria) | Une anomalie thermique locale et permanente dans les gneiss d’Ahorn, réalimentés par l’eau de fonte de glacier (Autriche) Una anomalía térmica local persistente en el gneis de Ahorn recargada por el agua de deshielo de los glaciares (Austria) 奥地利冰川融水补给的片麻岩中持续的局部热异常 Uma anomalia termal persistente no gnaisse de Ahorn recarregado por água de degelo glacial (Áustria) Texte intégral
2020
Heldmann, Claus-Dieter | Sass, Ingo | Schäffer, Rafael
In the unlined Tuxbach water transfer tunnel, running between Hintertux (1,500 m asl) and the Schlegeis Reservoir (Austria), a local geothermal anomaly with temperatures up to 14.6 °C exists. These temperatures are around 3 °C higher than expected, considering the tunnel’s shallow depth, together with its surrounding alpine environment and regional heat flow. This is especially noticeable because the temperatures have remained stable since the tunnel’s construction in 1969, although the tunnel is generally cooling the surrounding rock massive. The objective of this investigation is to explain the origin of the anomaly with hydrogeological methods and to evaluate the hydrogeological properties of the gneisses exposed in the tunnel. The anomaly is caused by the high hydraulic conductivity (~2.5∙10⁻⁵ m s⁻¹) within a narrow shear-zone core, part of the Tux Shear Zones in the Ahorn Gneiss Core. The zone triggers fast groundwater transport over 1.5 km from both sides towards the tunnel. One reason is that the morphology provides thicker overburden with growing distance from the tunnel and therefore higher temperatures on the same horizontal level in the directions of the fault plane. The second explanation is that the narrowness of the shear zone permits effective heat transfer similar to a heat exchanger. No hydrothermal water share is recognizable; instead, mainly cold glacial melt water and snow contribute to the section of the anomaly and all other runouts of the tunnel. Factually based results show the disproportionately high contribution of snow and glaciers to the groundwater recharge in this alpine hard-rock aquifer.
Afficher plus [+] Moins [-]A theoretical analysis of basin-scale groundwater temperature distribution | Analyse théorique de la distribution de la température de l’eau souterraine à l’échelle d’un bassin Un análisis teórico de la distribución de temperatura del agua subterránea en escala de cuenca 盆地尺度地下水温度分布的理论分析 Uma análise teórica à escala de bacia da distribuição da temperatura da água subterrânea Texte intégral
2015
An, Ran | Jiang, Xiao-Wei | Wang, Jun-Zhi | Wan, Li | Wang, Xu-Sheng | Li, Hailong
The theory of regional groundwater flow is critical for explaining heat transport by moving groundwater in basins. Domenico and Palciauskas’s (1973) pioneering study on convective heat transport in a simple basin assumed that convection has a small influence on redistributing groundwater temperature. Moreover, there has been no research focused on the temperature distribution around stagnation zones among flow systems. In this paper, the temperature distribution in the simple basin is reexamined and that in a complex basin with nested flow systems is explored. In both basins, compared to the temperature distribution due to conduction, convection leads to a lower temperature in most parts of the basin except for a small part near the discharge area. There is a high-temperature anomaly around the basin-bottom stagnation point where two flow systems converge due to a low degree of convection and a long travel distance, but there is no anomaly around the basin-bottom stagnation point where two flow systems diverge. In the complex basin, there are also high-temperature anomalies around internal stagnation points. Temperature around internal stagnation points could be very high when they are close to the basin bottom, for example, due to the small permeability anisotropy ratio. The temperature distribution revealed in this study could be valuable when using heat as a tracer to identify the pattern of groundwater flow in large-scale basins. Domenico PA, Palciauskas VV (1973) Theoretical analysis of forced convective heat transfer in regional groundwater flow.
Afficher plus [+] Moins [-]Impact of river reconstruction on groundwater flow during bank filtration assessed by transient three-dimensional modelling of flow and heat transport | Impact de la reconstruction d’une rivière sur l’écoulement des eaux souterraines via la filtration sur berge évalué par un modèle tridimensionnel en régime transitoire de l’écoulement et du transport de chaleur Impacto de la restauración de un río en el flujo de agua subterránea durante la filtración en las márgenes, evaluado mediante la modelización tridimensional transitoria del flujo y el transporte de calor 利用瞬态三维水流和热运移模拟评估河流改造对河岸渗滤作用中地下水流的影响 Impacto no fluxo de água subterrânea com a reconstrução do rio durante a filtração em margem avaliada pela modelagem transiente tridimensional do fluxo e transporte de calor Texte intégral
2020
Wang, Wei-shi | Oswald, Sascha E. | Gräff, Thomas | Lensing, Hermann-Josef | Liu, Tie | Strasser, Daniel | Munz, Matthias
Bank filtration (BF) is an established indirect water-treatment technology. The quality of water gained via BF depends on the subsurface capture zone, the mixing ratio (river water versus ambient groundwater), spatial and temporal distribution of subsurface travel times, and subsurface temperature patterns. Surface-water infiltration into the adjacent aquifer is determined by the local hydraulic gradient and riverbed permeability, which could be altered by natural clogging, scouring and artificial decolmation processes. The seasonal behaviour of a BF system in Germany, and its development during and about 6 months after decolmation (canal reconstruction), was observed with a long-term monitoring programme. To quantify the spatial and temporal variation in the BF system, a transient flow and heat transport model was implemented and two model scenarios, ‘with’ and ‘without’ canal reconstruction, were generated. Overall, the simulated water heads and temperatures matched those observed. Increased hydraulic connection between the canal and aquifer caused by the canal reconstruction led to an increase of ~23% in the already high share of BF water abstracted by the nearby waterworks. Subsurface travel-time distribution substantially shifted towards shorter travel times. Flow paths with travel times <200 days increased by ~10% and those with <300 days by 15%. Generally, the periodic temperature signal, and the summer and winter temperature extrema, increased and penetrated deeper into the aquifer. The joint hydrological and thermal effects caused by the canal reconstruction might increase the potential of biodegradable compounds to further penetrate into the aquifer, also by potentially affecting the redox zonation in the aquifer.
Afficher plus [+] Moins [-]Correction: Impact of river reconstruction on groundwater flow during bank filtration assessed by transient three-dimensional modelling of flow and heat transport | Erratum: Impact de la reconstruction d’une rivière sur l’écoulement des eaux souterraines via la filtration sur berge évalué par un modèle tridimensionnel en régime transitoire de l’écoulement et du transport de chaleur Erratum: Impacto de la restauración de un río en el flujo de agua subterránea durante la filtración en las márgenes, evaluado mediante la modelización tridimensional transitoria del flujo y el transporte de calor 勘误: 利用瞬态三维水流和热运移模拟评估河流改造对河岸渗滤作用中地下水流的影响 Erratum: Impacto no fluxo de água subterrânea com a reconstrução do rio durante a filtração em margem avaliada pela modelagem transiente tridimensional do fluxo e transporte de calor Texte intégral
2020
Wang, Wei-shi | Oswald, Sascha E. | Gräff, Thomas | Lensing, Hermann-Josef | Liu, Tie | Strasser, Daniel | Munz, Matthias
The original version of this article unfortunately contained mistakes.
Afficher plus [+] Moins [-]Correction: Impact of river reconstruction on groundwater flow during bank filtration assessed by transient three-dimensional modelling of flow and heat transport | Erratum: Impact de la reconstruction d’une rivière sur l’écoulement des eaux souterraines via la filtration sur berge évalué par un modèle tridimensionnel en régime transitoire de l’écoulement et du transport de chaleur Erratum: Impacto de la restauración de un río en el flujo de agua subterránea durante la filtración en las márgenes, evaluado mediante la modelización tridimensional transitoria del flujo y el transporte de calor 勘误: 利用瞬态三维水流和热运移模拟评估河流改造对河岸渗滤作用中地下水流的影响 Erratum: Impacto no fluxo de água subterrânea com a reconstrução do rio durante a filtração em margem avaliada pela modelagem transiente tridimensional do fluxo e transporte de calor Texte intégral
2020
Wang, Wei-shi | Oswald, Sascha E. | Gräff, Thomas | Lensing, Hermann-Josef | Liu, Tie | Strasser, Daniel | Munz, Matthias
The affiliation of Daniel Strasser is hereby corrected to: Department of Geotechnical Engineering, Federal Waterways Engineering and Research Institute (BAW), Kussmaulstraße 17, 76187 Karlsruhe, Germany
Afficher plus [+] Moins [-]Groundwater cooling of a supercomputer in Perth, Western Australia: hydrogeological simulations and thermal sustainability | Refroidissement par eaux souterraines d’un superordinateur à Perth, Australie Occidentale: simulations hydrogéologiques et durabilité thermique Enfriamiento por agua subterránea de una supercomputadora en Perth, Australia Occidental: simulaciones hidrogeológicas y sustentabilidad térmica 西澳大利亚珀斯超级计算机地下水冷却: 水文地质模拟和热量可持续性 Resfriamento por águas subterrâneas em Perth, Austrália Ocidental: simulações hidrogeológicas e sustentabilidade termal Texte intégral
2015
Sheldon, Heather A. | Schaubs, Peter M. | Rachakonda, Praveen K. | Trefry, Michael G. | Reid, Lynn B. | Lester, Daniel R. | Metcalfe, Guy | Poulet, Thomas | Regenauer-Lieb, Klaus
Groundwater cooling (GWC) is a sustainable alternative to conventional cooling technologies for supercomputers. A GWC system has been implemented for the Pawsey Supercomputing Centre in Perth, Western Australia. Groundwater is extracted from the Mullaloo Aquifer at 20.8 °C and passes through a heat exchanger before returning to the same aquifer. Hydrogeological simulations of the GWC system were used to assess its performance and sustainability. Simulations were run with cooling capacities of 0.5 or 2.5 Mega Watts thermal (MWth), with scenarios representing various combinations of pumping rate, injection temperature and hydrogeological parameter values. The simulated system generates a thermal plume in the Mullaloo Aquifer and overlying Superficial Aquifer. Thermal breakthrough (transfer of heat from injection to production wells) occurred in 2.7–4.3 years for a 2.5 MWth system. Shielding (reinjection of cool groundwater between the injection and production wells) resulted in earlier thermal breakthrough but reduced the rate of temperature increase after breakthrough, such that shielding was beneficial after approximately 5 years pumping. Increasing injection temperature was preferable to increasing flow rate for maintaining cooling capacity after thermal breakthrough. Thermal impacts on existing wells were small, with up to 10 wells experiencing a temperature increase ≥ 0.1 °C (largest increase 6 °C).
Afficher plus [+] Moins [-]Impact of permafrost development on groundwater flow patterns: a numerical study considering freezing cycles on a two-dimensional vertical cut through a generic river-plain system | Impact du développement du permafrost sur le mode d’écoulement de l’eau souterraine : une étude numérique considérant des cycles de gel sur une coupe verticale bi-dimensionnelle à travers un système type de plaine alluviale Impacto del desarrollo de permafrost sobre los patrones de flujo de agua subterránea: un estudio numérico considerando ciclos de congelamiento sobre un corte vertical bidimensional a través de un sistema genérico río - planicie 多年冻土的发育对地下水流模式的影响:一个考虑常见河流-平原系统中二维垂直冷冻的数值研究 Impacte do desenvolvimento do permafrost nos padrões de fluxo da água subterrânea: um estudo numérico considerando os ciclos de congelação num corte vertical bidimensional, através de um sistema genérico de planície de rio Permafrostsutbredning och dess betydelse för grundvattnets flödesmönster: en numerisk studie av en glacial cykel; utförd med hjälp ett två dimensionellt vertikalt tvärsnitt genom en generisk flodslätt med ett generiskt flodsystem Texte intégral
2013
Grenier, Christophe | Régnier, Damien | Mouche, Emmanuel | Benabderrahmane, Hakim | Costard, François | Davy, Ph. (Philippe)
The impact of glaciation cycles on groundwater flow was studied within the framework of nuclear waste storage in underground geological formations. The eastern section of the Paris Basin (a layered aquifer with impervious/pervious alternations) in France was considered for the last 120 ka. Cold periods corresponded with arid climates. The issue of talik development below water bodies was addressed. These unfrozen zones can maintain open pathways for aquifer recharge. Transient thermal evolution was simulated on a small-scale generic unit of the landscape including a “river” and “plain”. Coupled thermo-hydraulic modeling and simplified conductive heat transfer were considered for a broad range of scenarios. The results showed that when considering the current limited river dimensions and purely conductive heat transfer, taliks are expected to close within a few centuries. However, including coupled advection for flows from the river to the plain (probably pertinent for the eastern Paris Basin aquifer recharge zones) strongly delays talik closure (millennium scale). The impact on regional underground flows is expected to vary from a complete stop of recharge to a reduced recharge, corresponding to the talik zones. Consequences for future modeling approaches of the Paris Basin are discussed.
Afficher plus [+] Moins [-]