Affiner votre recherche
Résultats 1-2 de 2
A persistent local thermal anomaly in the Ahorn gneiss recharged by glacier melt water (Austria) | Une anomalie thermique locale et permanente dans les gneiss d’Ahorn, réalimentés par l’eau de fonte de glacier (Autriche) Una anomalía térmica local persistente en el gneis de Ahorn recargada por el agua de deshielo de los glaciares (Austria) 奥地利冰川融水补给的片麻岩中持续的局部热异常 Uma anomalia termal persistente no gnaisse de Ahorn recarregado por água de degelo glacial (Áustria) Texte intégral
2020
Heldmann, Claus-Dieter | Sass, Ingo | Schäffer, Rafael
In the unlined Tuxbach water transfer tunnel, running between Hintertux (1,500 m asl) and the Schlegeis Reservoir (Austria), a local geothermal anomaly with temperatures up to 14.6 °C exists. These temperatures are around 3 °C higher than expected, considering the tunnel’s shallow depth, together with its surrounding alpine environment and regional heat flow. This is especially noticeable because the temperatures have remained stable since the tunnel’s construction in 1969, although the tunnel is generally cooling the surrounding rock massive. The objective of this investigation is to explain the origin of the anomaly with hydrogeological methods and to evaluate the hydrogeological properties of the gneisses exposed in the tunnel. The anomaly is caused by the high hydraulic conductivity (~2.5∙10⁻⁵ m s⁻¹) within a narrow shear-zone core, part of the Tux Shear Zones in the Ahorn Gneiss Core. The zone triggers fast groundwater transport over 1.5 km from both sides towards the tunnel. One reason is that the morphology provides thicker overburden with growing distance from the tunnel and therefore higher temperatures on the same horizontal level in the directions of the fault plane. The second explanation is that the narrowness of the shear zone permits effective heat transfer similar to a heat exchanger. No hydrothermal water share is recognizable; instead, mainly cold glacial melt water and snow contribute to the section of the anomaly and all other runouts of the tunnel. Factually based results show the disproportionately high contribution of snow and glaciers to the groundwater recharge in this alpine hard-rock aquifer.
Afficher plus [+] Moins [-]Contribution of precipitation to groundwater flow systems in three major alluvial fans in Toyama Prefecture, Japan: stable-isotope characterization and application to the use of groundwater for urban heat exchangers | Contribution des précipitations aux systèmes hydrogéologiques d’écoulement dans trois principaux deltas alluviaux de la Préfecture de Toyama, Japon: caractérisation à l’aide des isotopes stables et application à l’exploitation des eaux souterraines pour des échangeurs urbains de chaleur Contribución de la precipitación a los sistemas de flujo de agua subterránea en tres abanicos aluviales principales en Toyama Prefecture, Japón: caracterización de isótopos estables y aplicación al uso de aguas subterráneas para intercambiadores de calor urbano 日本Toyama县三个主要冲积扇中降水对地下水水流系统的贡献:稳定同位素特征描述及其在城市热交换器地下水中的应用 富山県 (日本)内の3扇状地の地下水系への天水の寄与:安定同位体組成の特徴と都市型熱交換への地下水利用 Contribuição da precipitação aos sistemas de fluxo de águas subterrâneas em três leques aluviais na Prefeitura de Toyama, Japão: caracterização de isótopos estáveis e aplicação para o uso das águas subterrâneas para trocadores de calor urbanos Texte intégral
2019
Okakita, Nagisa | Iwatake, Kaname | Hirata, Hiromichi | Ueda, Akira
The isotopic compositions (D and ¹⁸O) of 177 precipitation samples collected at seven observation stations in Toyama Prefecture and one station in Gifu Prefecture in the northern part of central Japan were determined. The source and characteristics of the isotopes were clarified and their contribution to the groundwater flow systems of three major alluvial fans in the same area were investigated. The δD and δ¹⁸O values ranged from −113.3 to −26.7‰ and − 16.4 to −4.2‰, respectively. Precipitation samples collected from May to September (summer) and November to March (winter) plotted along two meteoric water lines, with d-excess = 10 and 30, respectively. Conversely, precipitation samples collected in April and October, and some samples in November to March, plotted between the two meteoric water lines. The contribution of precipitation to the groundwater systems was modelled based on the assumption that groundwater is a mixture of major river water and precipitation. According to the observed δ¹⁸O values for the precipitation, river water, and groundwater samples, the contribution of local precipitation to groundwater reservoirs ranged from 5 to 100%. Groundwater flows near the rivers did not always originate from 100% river runoff; however, the contribution of river runoff to groundwater decreased with increasing distance from the rivers, and groundwater flows far from the river were generated mainly by precipitation. The possibility of using groundwater for a ground-source heat pump system, for air conditioning in houses and to melt the snow on roads, is also discussed.
Afficher plus [+] Moins [-]