Affiner votre recherche
Résultats 1-7 de 7
Interactions eau souterraine/eau de surface sur des surfaces profondément altérées de faible relief: cas des lacs Victoria et Kyoga, Uganda Interacciones agua subterránea/agua superficial en superficies profundamente meteorizadas de bajo relieve: evidencias de los Lagos Victoria y Kyoga, Uganda 深度风化的低地势地下地表水相互作用:来自乌干达维多利亚湖和基奧加湖的证据 Interacções água subterrânea/água superficial em zonas aplanadas profundamente meteorizadas: evidência a partir dos Lagos Vitória e Kyoga, Uganda | Groundwater/surface-water interactions on deeply weathered surfaces of low relief: evidence from Lakes Victoria and Kyoga, Uganda Texte intégral
2011
Owor, Michael | Taylor, Richard | Mukwaya, Christine | Tindimugaya, Callist
Little is known of the interactions between groundwater and surface water on deeply weathered landscapes of low relief in the Great Lakes Region of Africa (GLRA). The role of groundwater in sustaining surface-water levels during periods of absent rainfall is disputed and groundwater is commonly excluded from estimations of surface-water balances. Triangulated piezometers installed beside lake gauging stations on Lake Victoria and Lake Kyoga in Uganda provide the first evidence of the dynamic interaction between groundwater and surface water in the GLRA. Stable isotope ratios (2H:1H, 18O:16O) support piezometric evidence that groundwater primarily discharges to lakes but show further that mixing of groundwater and lake water has occurred at one site on Lake Victoria (Jinja). Layered-aquifer heterogeneity, wherein fluvial-lacustrine sands overlie saprolite, gives rise to both rapid and slow groundwater fluxes to lakes which is evident from the recession of borehole hydrographs following recharge events. Darcy throughflow calculations suggest that direct contributions from groundwater to Lake Victoria comprise <1% of the total inflows to the lake. Groundwater/surface-water interactions are strongly influenced by changing drainage base (lake) levels that are controlled, in part, by regional climate variability and dam releases from Lake Victoria (Jinja).
Afficher plus [+] Moins [-]Long-term artificial seawater irrigation as a sustainable environmental management strategy for abandoned solar salt works: The case study of Agua Amarga salt marsh (SE Spain) Texte intégral
2022
Alhama, Iván | García-Ros, Gonzalo | González-Alcaraz, M Nazaret | Álvarez-Rogel, José
Groundwater abstraction is among the main anthropogenic causes of wetland desiccation worldwide, and corrective measures must be taken to avoid degradation of this valuable ecosystems. A case study is the Agua Amarga salt marsh (≈180 ha) (SE Spain). Agua Amarga includes a solar saltwork pond network in operation between 1925 and 1975, when it was abandoned, and the ponds were colonized by salt marsh vegetation. In 2008 two desalination plants were operating in the marsh vicinity, which were supplied with groundwater. To mitigate the possible negative impact on the salt marsh ecosystem due to groundwater drawdown, in 2009 a sea water irrigation program was implemented. This paper summarizes the results of a ten-year monitoring program (2010–2020) to evaluate the effects of the irrigation program on groundwater levels and quality, soil salinity and moisture, and vegetation cover. During this period, average groundwater level was 2.5 m below the surface and around 1 m deep near the irrigated ponds. Groundwater salinity was not affected outside the saltmarsh, but inside, where the saltworks caused values to rise above 300 mS/cm, it decreased more than 150 mS/cm in some 20 m deep piezometers. Between 2012 and 2020, vegetation cover increased between ≈10 and ≈25 %, with halophyte species such as Arthrocnemum macrostachyum and Sarcocornia fruticosa being the most favoured. In areas with prolonged flooding, Ruppia maritima, a plant species that lives submerged in saline water, was found. In the irrigated areas, soil electrical conductivity (1:5 soil:water extracts) decreased from ≈7-14 mS cm-1 to ≈2-6 mS cm-1. We present an example of sustainable actions in a coastal wetland, where the exploitation of water resources in semiarid areas is combined with promoting natural habitats.
Afficher plus [+] Moins [-]Groundwater flow in the transition zone between freshwater and saltwater: a field-based study and analysis of measurement errors | Ecoulement des eaux souterraines dans la zone de transition eau douce-eau salée: étude sur le terrain et analyse des erreurs de mesure Flujo de agua subterránea en la zona de transición entre agua dulce y agua salada: un estudio de campo y análisis de errores de medición 淡水和海水之间过渡带中的地下水流:基于野外的研究及测量误差的分析 Fluxo das águas subterrâneas na zona de transição entre agua doce e salgada: um estudo baseado em campo e análise de erros de medição Texte intégral
2018
Post, Vincent E. A. | Banks, Eddie | Brunke, Miriam
The quantification of groundwater flow near the freshwater–saltwater transition zone at the coast is difficult because of variable-density effects and tidal dynamics. Head measurements were collected along a transect perpendicular to the shoreline at a site south of the city of Adelaide, South Australia, to determine the transient flow pattern. This paper presents a detailed overview of the measurement procedure, data post-processing methods and uncertainty analysis in order to assess how measurement errors affect the accuracy of the inferred flow patterns. A particular difficulty encountered was that some of the piezometers were leaky, which necessitated regular measurements of the electrical conductivity and temperature of the water inside the wells to correct for density effects. Other difficulties included failure of pressure transducers, data logger clock drift and operator error. The data obtained were sufficiently accurate to show that there is net seaward horizontal flow of freshwater in the top part of the aquifer, and a net landward flow of saltwater in the lower part. The vertical flow direction alternated with the tide, but due to the large uncertainty of the head gradients and density terms, no net flow could be established with any degree of confidence. While the measurement problems were amplified under the prevailing conditions at the site, similar errors can lead to large uncertainties everywhere. The methodology outlined acknowledges the inherent uncertainty involved in measuring groundwater flow. It can also assist to establish the accuracy requirements of the experimental setup.
Afficher plus [+] Moins [-]Geological structure as a control on floodplain groundwater dynamics | La structure géologique en tant que facteur de contrôle de l’hydrodynamique souterraine d’une plaine d’inondation Estructura geológica como control de la dinámica del agua subterránea de la llanura de inundación 控制河漫滩地下水动力学的地质构造 Estrutura geológica como controle da dinâmica da água subterrânea em planícies de inundação Texte intégral
2019
Ó Dochartaigh, B. É. | Archer, N. A. L. | Peskett, L. | Macdonald, A. M. | Black, A. R. | Auton, C. A. | Merritt, J. E. | Gooddy, D. C. | Bonell, M.
Groundwater in upland floodplains has an important function in regulating river flows and controlling the coupling of hillslope runoff with rivers, with complex interaction between surface waters and groundwaters throughout floodplain width and depth. Heterogeneity is a key feature of upland floodplain hydrogeology and influences catchment water flows, but it is difficult to characterise and therefore is often simplified or overlooked. An upland floodplain and adjacent hillslope in the Eddleston catchment, southern Scotland (UK), has been studied through detailed three-dimensional geological characterisation, the monitoring of ten carefully sited piezometers, and analysis of locally collected rainfall and river data. Lateral aquifer heterogeneity produces different patterns of groundwater level fluctuation across the floodplain. Much of the aquifer is strongly hydraulically connected to the river, with rapid groundwater level rise and recession over hours. Near the floodplain edge, however, the aquifer is more strongly coupled with subsurface hillslope inflows, facilitated by highly permeable solifluction deposits in the hillslope–floodplain transition zone. Here, groundwater level rise is slower but high heads can be maintained for weeks, sometimes with artesian conditions, with important implications for drainage and infrastructure development. Vertical heterogeneity in floodplain aquifer properties, to depths of at least 12 m, can create local aquifer compartmentalisation with upward hydraulic gradients, influencing groundwater mixing and hydrogeochemical evolution. Understanding the geological processes controlling aquifer heterogeneity, which are common to formerly glaciated valleys across northern latitudes, provides key insights into the hydrogeology and wider hydrological behaviour of upland floodplains.
Afficher plus [+] Moins [-]Spatiotemporal variation of river temperature as a predictor of groundwater/surface-water interactions in an arid watershed in China | Variation spatiotemporelle de la température d’une rivière en tant qu’indicateurs prévisionnels des interactions entre les eaux souterraines et les eaux de surface dans un bassin versant aride en Chine Variación espacio temporal de la temperatura de un río como un indicador de la interacción agua superficial / agua subterránea en una cuenca árida en China 中国干旱流域基于河流温度时空变化的地下水/地表水相互作用研究 Variação espaço-temporal da temperatura fluvial como um preditor de interações entre águas superficiais e subterrâneas em uma bacia hidrográfica árida na China Texte intégral
2015
Yao, Yingying | Huang, Xiang | Liu, Jie | Zheng, Chunmiao | He, Xiaobo | Liu, Chuankun
Interactions between groundwater and surface water in arid regions are complex, and recharge–discharge processes are often influenced by the hydrological regime, climate and geology. Traditional methods such as hydraulic gradient measuring by piezometers, differential discharge gauging and conservative tracer experiments, are often inadequate to capture the spatial and temporal variation of exchange rates. In this study, the distribution and the size of the overall groundwater inflow zone (GIZ) and the hyporheic inflow zone (HIZ) in the middle Heihe River Basin, northwest China, are characterized, and the relative inflow flux is estimated by high-resolution temperature measurements. Distributed temperature sensing (DTS) was used to measure the mixing temperatures of a 5-km reach of streambed with a spatial resolution of 0.5 m. The sampling interval was 0.25 m, and the temporal interval was 15 and 10 min at Pingchuan and Banqiao experimental sites, respectively. Two separate measurement periods in Pingchuan (Ping1, Ping2) captured different meteorological and stream-flow conditions. The results show that the number and the size range of the individual HIZs are greater than those of GIZs. Groundwater upwelling (GIZ) causes a larger decrease in river-water temperature with less inflow flux compared with the HIZ. The distribution pattern of HIZs and GIZs is influenced by the hydrodynamics of the river and the hydraulic permeability of the riverbed. High-resolution temperature variation based on DTS is an effective predictor of distributed inflows from groundwater upwelling and hyporheic exchange in an arid region.
Afficher plus [+] Moins [-]Impact of river water levels on the simulation of stream–aquifer exchanges over the Upper Rhine alluvial aquifer (France/Germany) | Impact des niveaux d’eau de la rivière sur la simulation des échanges nappe–rivière dans l’aquifère alluvial du Haut Rhin (France/Allemagne) Impacto de los niveles del agua de los ríos en la simulación de los intercambios entre la corriente y el agua subterránea en el acuífero aluvial del Alto Rin (Francia/Alemania) 河流水位对模拟河流含水层与(法国/德国)莱茵河上游冲积含水层交换的影响 Impactos dos níveis fluviais na simulação e trocas rio–aquíferos sob o aquífero aluvial do Reno Superior (França/Alemanha) Texte intégral
2018
Vergnes, Jean-Pierre | Habets, Florence
This study aims to assess the sensitivity of river level estimations to the stream–aquifer exchanges within a hydrogeological model of the Upper Rhine alluvial aquifer (France/Germany), characterized as a large shallow aquifer with numerous hydropower dams. Two specific points are addressed: errors associated with digital elevation models (DEMs) and errors associated with the estimation of river level. The fine-resolution raw Shuttle Radar Topographic Mission dataset is used to assess the impact of the DEM uncertainties. Specific corrections are used to overcome these uncertainties: a simple moving average is applied to the topography along the rivers and additional data are used along the Rhine River to account for the numerous dams. Then, the impact of the river-level temporal variations is assessed through two different methods based on observed rating curves and on the Manning formula. Results are evaluated against observation data from 37 river-level points located over the aquifer, 190 piezometers, and a spatial database of wetlands. DEM uncertainties affect the spatial variability of the stream–aquifer exchanges by inducing strong noise and unrealistic peaks. The corrected DEM reduces the biases between observations and simulations by 22 and 51% for the river levels and the river discharges, respectively. It also improves the agreement between simulated groundwater overflows and observed wetlands. Introducing river-level time variability increases the stream–aquifer exchange range and reduces the piezometric head variability. These results confirm the need to better assess river levels in regional hydrogeological modeling, especially for applications in which stream–aquifer exchanges are important.
Afficher plus [+] Moins [-]Coupling isotopic and piezometric data to infer groundwater recharge mechanisms in arid areas: example of Samail Catchment, Oman | Evaluation des mécanismes de recharge des eaux souterraines en région aride à partir d’une approche couplant des données isotopiques et piézométriques: exemple du bassin de Samail, Oman Acoplamiento de datos isotópicos y piezométricos para inferir mecanismos de recarga del agua subterránea en áreas áridas: ejemplo de Samail Catchment, Omán 综合同位素和测压数据推断干旱地区的地下水补给机理:阿曼Samail汇水区研究案例 Acoplando dados isotópicos e piezométricos para inferior sobre os mecanismos de recarga das águas subterrâneas em áreas áridas: exemplo da Bacia de Samail, Omã Texte intégral
2018
Abdalla, Osman A. E. | Al-Hosni, Talal | Al-Rawahi, Abdullah | Kacimov, Anvar | Clark, Ian
Hydrochemistry and well hydrographs are coupled to assess groundwater recharge in the regional catchment of Samail, Oman. The complex geology comprises three aquifers: limestones of the Hajar Supergroup (HSG) at the highlands of North Oman Mountains (NOM); fractured/weathered ophiolites; and Quaternary alluvium. Groundwater flows south–north from the NOM to the coast. Samples from groundwater wells and springs (38) were analyzed for isotopes and major ions. Corrected ¹⁴C dating reveals modern groundwater across the entire catchment, while ⁸⁷Sr/⁸⁶Sr (0.70810–0.70895) shows greater homogeneity. Groundwater in the upper catchment is depleted in ²H and ¹⁸O, indicating a high-altitude recharge source (NOM), and becomes enriched downstream, with a slope indicating an evaporation effect. The hydrographs of nested piezometers located in the upper, middle and lower catchment show different recharge responses between deep and shallower depths. Head difference in response to recharge is observed upstream, suggesting a lateral recharge mechanism, contrary to vertical recharge downstream reflected in identical recharge responses. The homogeneous ⁸⁷Sr/⁸⁶Sr ratio, head changes, downstream enrichment of ²H and ¹⁸O, and the presence of modern groundwater throughout the catchment suggest that groundwater recharge takes place across the entire catchment and that the three aquifers are hydraulically connected. The recharge estimated using the chloride mass balance method is in the range of 0–43% of the mean annual rainfall.
Afficher plus [+] Moins [-]