Lethal impacts of selenium counterbalance the potential reduction in mercury bioaccumulation for freshwater organisms
2021
Gerson, Jacqueline R. | Dorman, Rebecca | Eagles-Smith, Collin | Bernhardt, Emily S. | Walters, David
Mercury (Hg), a potent neurotoxic element, can biomagnify through food webs once converted into methylmercury (MeHg). Some studies have found that selenium (Se) exposure may reduce MeHg bioaccumulation and toxicity, though this pattern is not universal. Se itself can also be toxic at elevated levels. We experimentally manipulated the relative concentrations of dietary MeHg and Se (as selenomethionine [SeMet]) for an aquatic grazer (the mayfly, Neocloeon triangulifer) and its food source (diatoms). Under low MeHg treatment (0.2 ng/L), diatoms exhibited a quadratic pattern, with decreasing diatom MeHg concentration up to 2.0 μg Se/L and increasing MeHg accumulation at higher SeMet concentrations. Under high MeHg treatment (2 ng/L), SeMet concentrations had no effect on diatom MeHg concentrations. Mayfly MeHg concentrations and biomagnification factors (concentration of MeHg in mayflies: concentration of MeHg in diatoms) declined with SeMet addition only in the high MeHg treatment. Mayfly MeHg biomagnification factors decreased from 5.3 to 3.3 in the high MeHg treatment, while the biomagnification factor was constant with an average of 4.9 in the low MeHg treatment. The benefit of reduced MeHg biomagnification was offset by non-lethal effects and high mortality associated with ‘protective’ levels of SeMet exposure. Mayfly larvae escape behavior (i.e., startle response) was greatly reduced at early exposure days. Larvae took nearly twice as long to metamorphose to adults at high Se concentrations. The minimum number of days to mayfly emergence did not differ by SeMet exposure, with an average of 13 days. We measured an LC50SₑMₑₜ for mayflies of 3.9 μg Se/L, with complete mortality at concentrations ≥6.0 μg Se/L. High reproductive mortality occurred at elevated SeMet exposures, with only 0–18% emergence at ≥4.12 μg Se/L. Collectively, our results suggest that while there is some evidence that Se can reduce MeHg accumulation at the base of the food web at specific exposure levels of SeMet and MeHg, Se is also toxic to mayflies and could lead to negative effects that extend across ecosystem boundaries.
Показать больше [+] Меньше [-]Ключевые слова АГРОВОК
Библиографическая информация
Эту запись предоставил National Agricultural Library