Genetic mapping of the wheat dimeric α-amylase inhibitor multi-gene family using allele-specific primers based on intergenomic SNPs
2006
Wang, Ji-Rui | Wei, Yuming | Yan, Ze-Hong | Zheng, You-Liang
Single nucleotide polymorphisms (SNPs) identified in EST sequences can be used to map expressed genes. Though SNPs are useful markers for genetic mapping, SNP mapping of genes in common wheat is challenging because the genetic complement of wheat consists of three closely related genomes (designated A, B, and D), and most genes are present in triplicate sets. Mapping multi-gene family members is further complicated by the fact that it is difficult to distinguish SNP differences between the various paralogs from those between the different genomes. We have developed a PCR-based method for assigning wheat EST sequences to their proper genetic loci by first identifying and mapping SNPs that distinguish the three genomes. To develop this method, we focused on EST sequences encoding the dimeric α-amylase inhibitors (WDAI), The WDAI coding regions of hexaploid wheat were aligned. The sequences were classified into three groups based on nucleotide variations. Twenty-two SNPs were identified that distinguish the three groups. Group-specific primers based on these SNPs were designed to permit selective amplification of each group. The chromosomal location of each group was then determined using Group 3 ditelosomic lines of Chinese Spring. Groups 1 and 2 were assigned to chromosome locations 3DS and 3BS, respectively, whereas no sequence could be assigned to 3AS. A remarkable feature of this method is the ability to discriminate the location of homoeologous multigenes in the three genomes of wheat. This strategy can be useful for assigning unknown wheat EST sequences to specific chromosomes.
Показать больше [+] Меньше [-]Ключевые слова АГРОВОК
Библиографическая информация
Эту запись предоставил National Agricultural Library