Pharmacological implications of ipriflavone against environmental metal–induced neurodegeneration and dementia in rats
2021
Hussien, Hend M. | Ghareeb, Doaa A. | Ahmed, Hany E. A. | Hafez, Hani S. | Saleh, Samar R.
Long-term exposure to environmental neurotoxic metals is implicated in the induction of dementia and cognitive decline. The present study aims to illustrate the therapeutic role of ipriflavone as a synthetic isoflavone against environmental metal–induced cognitive impairment in rats. Dementia was induced by a mixture of aluminum, cadmium, and fluoride for 90 days followed by ipriflavone for a further 30 days. Metal-treated animals exhibited abnormal behaviors in the Morris water maze task. Neuropathological biomarkers including oxidative stress (TBARS, NO, SOD, GPX, GST, and GSH), inflammation (TNF- α, IL-6, and IL-1β), neurotransmission (AChE and MAO), and insulin resistance (insulin, insulin receptor, and insulin-degrading enzyme) were altered, which consequently elevated the level of amyloid-β42 and tau protein in the hippocampus tissues inducing neuronal injury. Ipriflavone significantly (P < 0.05) ameliorated the neurobehavioral abnormalities and the cognitive dysfunction biomarkers via antioxidant/anti-inflammatory mechanism. Moreover, ipriflavone downregulated the mRNA expression level of amyloid precursor protein and tau protein, preventing amyloid plaques and neurofibrillary tangle aggregation at P < 0.05. A molecular docking study revealed that ipriflavone has a potent binding affinity towards AChE more than donepezil and acts as a strong AChE inhibitor. Our data concluded that the therapeutic potential of ipriflavone against dementia could provide a new strategy in AD treatment.
Показать больше [+] Меньше [-]Ключевые слова АГРОВОК
Библиографическая информация
Эту запись предоставил National Agricultural Library