Conversion of Acetaminophen to the Bioactive N-Acylphenolamine AM404 via Fatty Acid Amide Hydrolase-dependent Arachidonic Acid Conjugation in the Nervous System
2005
Högestätt, Edward D. | Jönsson, Bo A. G. | Ermund, Anna | Andersson, David A. | Björk, Henrik | Alexander, Jessica P. | Cravatt, Benjamin F. | Basbaum, A. I. | Zygmunt, Peter M.
Acetaminophen (paracetamol) is a popular domestic analgesic and antipyretic agent with a weak anti-inflammatory action and a low incidence of adverse effects as compared with aspirin and other non-steroidal anti-inflammatory drugs. Here we show that acetaminophen, following deacetylation to its primary amine, is conjugated with arachidonic acid in the brain and the spinal cord to form the potent TRPV₁ agonist N-arachidonoylphenolamine (AM404). This conjugation is absent in mice lacking the enzyme fatty acid amide hydrolase. AM404 also inhibits purified cyclooxygenase (COX)-1 and COX-2 and prostaglandin synthesis in lipopolysaccharide-stimulated RAW264.7 macrophages. This novel metabolite of acetaminophen also acts on the endogenous cannabinoid system, which, together with TRPV₁ and COX, is present in the pain and thermoregulatory pathways. These findings identify fatty acid conjugation as a novel pathway for drug metabolism and provide a molecular mechanism for the occurrence of the analgesic N-acylphenolamine AM404 in the nervous system following treatment with acetaminophen.
Показать больше [+] Меньше [-]Ключевые слова АГРОВОК
Библиографическая информация
Эту запись предоставил National Agricultural Library