Visible light photocatalytic water disinfection and its kinetics using Ag-doped titania nanoparticles
2014
Younas, Hassan | Qazi, Ishtiaq A. | Hashmi, Imran | Ali Awan, M. | Maḥmūd, Āṣif | Qayyum, Hafiz Adil
The UN estimated about five million deaths every year due to water-borne diseases, accounting from four billion patients. Keeping in view, the ever increasing health issues and to undermine this statistics, a reliable and sustainable water-treatment method has been developed using visible light for water treatment. titania nanoparticles (NPs) have been synthesized successfully by a more applicable method Viz: liquid impregnation (LI) method. The bacterial death rate by photocatalysis under visible light was studied by employing a typical fluorescent source and was found to follow pseudo first-order reaction kinetics. The nanoparticles were characterized using X-ray diffraction (XRD), scanning electron microscopy, and energy-dispersive X-ray spectroscopy to deduce their size range, surface morphology, and elemental compositions, respectively. Among all the prepared grades, 1 % Ag–TiO₂was found to be a very effective photocatalytic agent against Escherichia coli. The resulted photoinactivated data were also evaluated by different empirical kinetic models for bacterial inactivation. Hom, Hom-power, Rational, and Selleck models were not able to explain the disinfection kinetics but modified-Hom model fitted best with the experimentally obtained data by producing a shoulder, log-linear, and a tail region.
Показать больше [+] Меньше [-]Ключевые слова АГРОВОК
Библиографическая информация
Эту запись предоставил National Agricultural Library