Temporal trend of arsenic in outdoor air PM2.5 in Wuhan, China, in 2015–2017 and the personal inhalation of PM-bound arsenic: implications for human exposure
2020
Mao, Xiang | Hu, Xun | Wang, Yao | Xia, Wei | Zhao, Shasha | Wan, Yanjian
Arsenic in fine air particulate matter (PM₂.₅) has been identified as an important factor responsible for the morbidity of lung cancer, which has increased sharply in many regions of China. Some reports in China have shown that arsenic in the air exceeds the ambient air quality standard value, while long-term airborne arsenic concentrations in central China and human exposure via inhalation of PM–bound arsenic (inhalable airborne PM) have not been well characterized. In this study, 579 outdoor air PM₂.₅ samples from Wuhan, a typical city in central China, were collected from 2015 to 2017, and arsenic was measured by inductively coupled plasma-mass spectrometry. Personal exposure to PM-bound arsenic via inhalation and urinary arsenic concentration were also measured. The concentrations of arsenic in PM₂.₅ were in the range of 0.42–61.6 ng/m³ (mean 8.48 ng/m³). The average concentration of arsenic in 2015 (10.7 ng/m³) was higher than that in 2016 (6.81 ng/m³) and 2017 (8.18 ng/m³), exceeded the standard value. The arsenic concentrations in spring and winter were higher than those in summer and autumn. No significant differences (p > 0.05) were found among different sites. The daily intake of arsenic inhalation based on PM₁₀ samples collected by personal samplers (median, 10.8 ng/m³) was estimated. Urban residents inhaled higher levels of PM-bound arsenic than rural residents. Daily intake of arsenic via inhalation accounted for a negligible part (< 1%) of the total daily intake of arsenic (calculated based on excreted urinary arsenic); however, potential associations between the adverse effects (e.g., lung adenocarcinoma) and inhaled PM-bound arsenic require more attention, particularly for those who experience in long-term exposure. This study is the first report of a 3-year temporal trend of airborne PM₂.₅-bound arsenic in central China.
Показать больше [+] Меньше [-]Ключевые слова АГРОВОК
Библиографическая информация
Эту запись предоставил National Agricultural Library