Comparison of adsorption behaviors and mechanisms of methylene blue, Cd2+, and phenanthrene by modified biochars derived from pomelo peel
2021
Li, Baoqing | Zheng, Zhiran | Fang, Jianzhang | Gong, Jiaxin | Fang, Zhanqiang | Wang, Wenxiang
Although biochar (BC) has been widely used to adsorb pollutants in environment due to its natural and green characteristics, the structural defects of BC limit the ability to remove various environmental pollutants in aqueous solution. In this study, oxidized biochar (OBC) and sulfhydryl biochar (SBC) derived from pomelo peel (PP) were prepared through an oxidation and esterification reaction. BC and modified BC were used for the removal of methylene blue (MB), Cd²⁺, and phenanthrene (PHE) in aqueous solution. The adsorption behavior and efficiency toward different types of pollutants were studied by Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), Raman, X-ray photoelectron spectroscopy (XPS), kinetics, and isotherm model fitting. The results showed that the change of pH had great effect on MB and Cd²⁺ adsorption, but not on PHE. SBC not only possessed the newly formed sp²-hybridized domains with easy access to aromatic pollutants but also had multiple functional groups (-COOH, -OH, -SH, -NH₂) that provided adsorption sites for positively charged pollutants. SBC was more flexible and efficient in purifying pollutants compared to BC and OBC, with the saturated adsorption capacities of MB (209.16 mg/g), Cd²⁺ (786.19 mg/g), and PHE (521.58 mg/g). Moreover, the adsorption kinetic and isotherms fitting showed that the adsorption mechanisms were closely related to the structure of biochar and the properties of pollutants, including π-π interaction, surface charge, electrostatic interaction, surface functional groups, and Van der Waals force. In addition, the analysis of structure-function relationship demonstrated the enhanced hydrophilicity and the easy exposure of the binding sites on OBC and SBC. Hence, it was significantly effective to regulate microstructure and interfacial properties to promote its adsorption behaviors of biochar.
Показать больше [+] Меньше [-]Ключевые слова АГРОВОК
Библиографическая информация
Эту запись предоставил National Agricultural Library