Biosorption of Toxic Heavy Metal Ions from Water Environment Using Honeycomb Biomass—An Industrial Waste Material
2012
Reddy, Desireddy Harikishore Kumar | Lee, Seung-Mok | Seshaiah, Kalluru
This paper examined the ability of honeycomb biomass (HC), a by-product of the honey industry, to remove Pb(II), Cd(II), Cu(II), and Ni(II) ions from aqueous solutions. The equilibrium adsorptive quantity was determined as a function of the solution pH, amount of biomass, contact time, and initial metal ion concentration in a batch biosorption technique. Biosorbent was characterized by Fourier transform infrared (FTIR), scanning electron microscopy with energy-dispersive X-ray, and X-ray diffraction studies. FTIR spectral analysis confirmed the coordination of metals with hydroxyl, carbonyl, and carboxyl functional groups present in the HC. The metals uptake by HC was rapid, and the equilibrium time was 40 min at constant temperature and pH. Sorption kinetics followed a nonlinear pseudo-second-order model. Isotherm experimental data were fitted to Langmuir, Freundlich, Dubinin–Radushkevich, and Temkin isotherm models in nonlinear forms. The mechanism of metal sorption by HC gave good fits for Langmuir model, and the affinity order of the biosorbent for four heavy metals was Pb(II)>Cd(II)>Cu(II)>Ni(II). The thermodynamic studies for the present biosorption process were performed by determining the values of ΔG°, ΔH°, and ΔS°, and it was observed that biosorption process is endothermic and spontaneous. This work provides an efficient and easily available environmental friendly honeycomb biomass as an attractive option for removing heavy metal ions from water and wastewater.
Показать больше [+] Меньше [-]Ключевые слова АГРОВОК
Библиографическая информация
Эту запись предоставил National Agricultural Library