Copper and Zinc in Rhizosphere Soil and Toxicity Potential in White Oats (Avena sativa) Grown in Soil with Long-Term Pig Manure Application
2019
Benedet, Lucas | De Conti, Lessandro | Lazzari, Cleiton Junior Ribeiro | Júnior, Vilmar Müller | Dick, Deborah Pinheiro | Lourenzi, Cledimar Rogério | Lovato, Paulo Emílio | Comin, Jucinei José | Tiecher, Tadeu Luis | Ricachenevsky, Felipe Klein | Brunetto, Gustavo
Successive applications of pig manure increase Cu and Zn contents in soils and may cause toxicity to plants. However, plants may have defense strategies that reduce Cu and Zn availability in rhizosphere soil. The study aimed to evaluate growth of white oats (Avena sativa) and Cu and Zn availability in rhizosphere soil subjected to long-term applications of pig slurry (PS) and pig deep litter (PL). The study was carried out with samples of a Typic Hapludalf soil from an 11-year experiment with annual fertilization of 180 kg N ha⁻¹ as pig slurry (PS180) and pig deep litter (PL180) and a control (C) treatment. White oats were grown in pots with soil collected at 0.0–0.10 m depth. Thirty-five and 70 days after emergence (DAE), rhizosphere (RS) and bulk soil (BS) were analyzed to determine Cu and Zn availability. Plant growth, tissue Cu and Zn concentration, and content (concentration X dry weight) were measured. The application of pig manure for 11 years increased available soil Cu and Zn, as well as tissue concentration and content. Dry matter yield and plant height in PL180 were similar to those found in plants grown in the control treatment, while plants grown in PS180 had higher dry matter than in C. We found few differences in soil chemical characteristics and Cu and Zn contents between RS and BS. The high Cu concentrations in roots, especially in soil treated with PL180, show that Cu retention in the roots prevents excess Cu transport to white oat shoots.
Показать больше [+] Меньше [-]Ключевые слова АГРОВОК
Библиографическая информация
Эту запись предоставил National Agricultural Library