Phytoremediation of Zn- and Cr-Contaminated Soil Using Two Promising Energy Grasses
2014
Li, C. | Xiao, B. | Wang, Q. H. | Yao, S. H. | Wu, Zhiyang
The outstanding biological performance and non-food utilization of bioenergy grass possibly make it to be the best candidate for phytoremediation of heavy metal-contaminated soil, but evidence is limited. In this study, we conducted pot experiments to quantify the performance of two promising energy grasses, Arundo donax and Miscanthus sacchariflorus, in the phytoremediation of Zn- and Cr-contaminated soil. The results showed that (1) the biomass and root length of the two grasses were firstly increased and then kept stable or slightly decreased with increasing soil Zn/Cr concentration, implying that the two grasses had strong tolerance to Zn/Cr contamination; (2) the Zn/Cr concentration in the grass roots was two to seven times of that in the shoots, while both of them were positively correlated with the Zn/Cr concentration in soil; (3) the total accumulation of Zn/Cr in the grass (shoots + roots) was firstly determined by their concentration in the shoots and secondly determined by the shoots’ biomass, indicating that most of the Zn/Cr could be removed from contaminated soil by harvesting the aboveground parts; (4) the accumulating amount of the two grasses for Zn were 17.5 and 12.1 mg plant⁻¹, respectively; while the accumulating amount for Cr were 3.9 and 2.9 mg plant⁻¹, respectively. Taken together, the two energy grasses had strong tolerance and high accumulating ability for Zn/Cr, and therefore, they are promising candidates for the phytoremediation of Zn-/Cr-contaminated soil.
Показать больше [+] Меньше [-]Ключевые слова АГРОВОК
Библиографическая информация
Эту запись предоставил National Agricultural Library