The effects and mechanisms of polystyrene and polymethyl methacrylate with different sizes and concentrations on Gymnodinium aeruginosum
2021
Huang, Wenqiu | Zhao, Ting | Zhu, Xiaolin | Ni, Ziqi | Guo, Xin | Tan, Liju | Wang, Jiangtao
In this study, Gymnodinium aeruginosum was exposed to polystyrene (PS) and polymethyl methacrylate (PMMA) of three particle sizes (0.1 μm, 1.0 μm and 100 μm) and two concentrations (10 mg/L and 75 mg/L) for 96 h. The density of algae cells, the endpoints that reactive oxygen species (ROS), total protein (TP), malondialdehyde (MDA), superoxide dismutase (SOD) and catalase (CAT), scanning and transmission electron microscopy (SEM and TEM) were used to explore the toxicity mechanism to the microalgae. At a concentration of 75 mg/L, the 96 h inhibition ratios (IR) with particle sizes of 0.1 μm, 1.0 μm and 100 μm on G. aeruginosum were 55.9%, 63.7% and 6.0% for PS, respectively, and 3.0%, 4.1% and ‐0.6% for PMMA, respectively. The most significant changes in ROS, TP, MDA, SOD and CAT were observed at 75 mg/L 1.0 μm of PS when treated for 96 h. When exposed to nanoplastics (NPs) and microplastics (MPs), the algae cells were damaged, and the antioxidant system was activated. Extracellular polymeric substance (EPS) could help to detoxify the algae. In general, PS was more toxic than PMMA. The toxicity of small MNPs (0.1 μm and 1.0 μm) was related to the concentrations, while large MNPs (100 μm) did not.
Показать больше [+] Меньше [-]Ключевые слова АГРОВОК
Библиографическая информация
Эту запись предоставил National Agricultural Library