Impacts of ammonium ion on triclinic birnessites towards the transformation of As(III)
2022
Jiang, Lu | Wu, Pingxiao | Xu, Yijing | Li, Yihao | Chen, Meiqing | Ahmed, Zubair | Zhu, Nengwu
Triclinic birnessite (TB), a typical layered Mn oxide which is abundant naturally occurring minerals with a vital impact on the transformation of arsenite (As(III)) by adsorption and oxidation. As one of the most common critical metalloids, ammonium ion (NH₄⁺) universally coexists with birnessite in marine, sediments or groundwater where are contaminated with As(III). In this study, we investigated the impacts of NH₄⁺ on TB towards the transformation of As(III). Compared with the original TB (40.1%), the As(III) removal efficiencies of three different concentration (0.5 M, 1 M and 2 M) NH₄⁺ impressed triclinic birnessite (TB-0.5 N, TB-1N and TB-2N) are increased rapidly in the order of: TB-2N (80.4%) > TB-1N (75.8%) > TB-0.5 N (71.5%). In addition, TB-2N exhibited the highest initial oxidation rate of 0.0031 min⁻¹ which exceeds twice as much as this of TB (0.0014 min⁻¹). And TB-2N could reach the max oxidation efficiency when the As concentration is 0.08 mM. Due to two different mechanisms of As(III) oxidation on birnessites under acidic and alkaline conditions, TB-2N showed a higher removal efficiency than TB at pH 3.0, 5.0, 7.0 and 9.0. Hence, there are two main reasons for the advanced As(III) oxidation capacity of TB-2N. One is the improvement of the average oxidation state of Mn, the other is the increase of oxygen vacancy with the coexistence of NH₄⁺. Moreover, the larger specific surface area of TB-2N also contribute to enhancing As(III) oxidation capacity. This study holds a fundamental understanding of the behavior of triclinic birnessite which is coexisted with ammonium ion towards the transformation of As(III) in the environment.
Показать больше [+] Меньше [-]Ключевые слова АГРОВОК
Библиографическая информация
Эту запись предоставил National Agricultural Library