A Combinatorial effect of carboxymethyl cellulose based scaffold and microRNA-15b on osteoblast differentiation
2016
Vimalraj, S. | Caravaṇan̲, Nallūr Cā. | Vairamani, M. | Gopalakrishnan, C. | Sastry, T.P. | Selvamurugan, N.
The present study was aimed to synthesize and characterize a bio-composite scaffold containing carboxymethyl cellulose (CMC), zinc doped nano-hydroxyapatite (Zn-nHAp) and ascorbic acid (AC) for bone tissue engineering applications. The fabricated bio-composite scaffold was characterized by SEM, FT-IR and XRD analyses. The ability of scaffold along with a bioactive molecule, microRNA-15b (miR-15b) for osteo-differentiation at cellular and molecular levels was determined using mouse mesenchymal stem cells (mMSCs). miR-15b acts as posttranscriptional gene regulator and regulates osteoblast differentiation. The scaffold and miR-15b were able to promote osteoblast differentiation; when these treatments were combined together on mMSCs, there was an additive effect on promotion of osteoblast differentiation. Thus, it appears that the combination of CMC/Zn-nHAp/AC scaffold with miR-15b would provide more efficient strategy for treating bone related defects and bone regeneration.
Показать больше [+] Меньше [-]Ключевые слова АГРОВОК
Библиографическая информация
Эту запись предоставил National Agricultural Library