The combined effect of short-term hydrological and N-fertilization manipulation of wetlands on CO2, CH4, and N2O emissions
2022
Bonetti, Giuditta | Limpert, Katy E. | Brodersen, Kasper Elgetti | Trevathan-Tackett, Stacey M. | Carnell, Paul E. | Macreadie, Peter I.
Freshwater wetlands are natural sinks of carbon; yet, wetland conversion for agricultural uses can shift these carbon sinks into large sources of greenhouse gases. We know that the anthropogenic alteration of wetland hydrology and the broad use of N-fertilizers can modify biogeochemical cycling, however, the extent of their combined effect on greenhouse gases exchange still needs further research. Moreover, there has been recent interest in wetlands rehabilitation and preservation by improving natural water flow and by seeking alternative solutions to nutrient inputs. In a microcosm setting, we experimentally exposed soils to three inundation treatments (Inundated, Moist, Drained) and a nutrient treatment by adding high nitrogen load (300 kg ha⁻¹) to simulate physical and chemical disturbances. After, we measured the depth microprofiles of N₂O and O₂ concentration and CO₂ and CH₄ emission rates to determine how hydrological alteration and nitrogen input affect carbon and nitrogen cycling processes in inland wetland soils. Compared to the Control soils, N-fertilizer increased CO₂ emissions by 40% in Drained conditions and increased CH₄ emissions in Inundated soils over 90%. N₂O emissions from Moist and Inundated soils enriched with nitrogen increased by 17.4 and 18-fold, respectively. Overall, the combination of physical and chemical disturbances increased the Global Warming Potential (GWP) by 7.5-fold. The first response of hydrological rehabilitation, while typically valuable for CO₂ emission reduction, amplified CH₄ and N₂O emissions when combined with high nitrogen inputs. Therefore, this research highlights the importance of evaluating the potential interactive effects of various disturbances on biogeochemical processes when devising rehabilitation plans to rehabilitate degraded wetlands.
Показать больше [+] Меньше [-]Ключевые слова АГРОВОК
Библиографическая информация
Эту запись предоставил National Agricultural Library