Wastewater Remediation via Modified Activated Carbon: A Review
2018
Hasan, M.B. | Hammood, Z.A.
The magnetic derivative of Activated Carbon (AC) is a promising new technique to isolate and recover consumed adsorbent. In this light, the current research seeks to summarise the magnetisation rout of AC and its applications, while identifying both benefits and drawbacks of different synthetic routs. Several methods, such as chemical co-precipitation, hydrothermal, impregnation, ball milling, and one-step synthetic routs, have been studied by previous researchers. Among these methods, chemical co-precipitation is simple, extensively adapted for Magnetic Activated Carbon (MAC) syntheses. In general, the magnetic derivatives of AC show a reduction in the surface area and pore volume, due to introduction of magnetic nanoparticles. Magnetisation enhances contaminants' adsorption, despite the reduction in surface area. It allows elimination of contaminants, barely treated by pristine AC due to the introduction of magnetic materials. Developments in synthetic procedures could overcome the destructive influence of acidity on MAC, providing a shield against it. MAC has been used in several applications, including organic and inorganic contaminant removal. Medically, MAC is used to lead drugs to a specific organ and, thus, reduce damages to non-affected organs. It can be said that the preparation method did not obstruct MAC application for specific contaminant adsorption. MAC regeneration has been reported for several sorption cycles, making the process sustainable and cost-effective. Future work could further develop the synthetic route and enhance the characteristics of the produced composite. It also may consider the influence of iron on the treated water, depending on its proposed usage.
Показать больше [+] Меньше [-]Ключевые слова АГРОВОК
Библиографическая информация
Эту запись предоставил University of Tehran