COVID-19 Waste as Source of Microplastics in the Environment: Implication for Aquatic Species, Human, and Remediation Measures- A Review
2023
Iheanacho, Stanley | Ogbu, Miracle | Ekpeyoung, Joshua | Tabi, Elizabeth | Iheanacho, Angus | Bhuyan, Md Simul | Ogunji, Johnny
Coronavirus (COVID-19) pandemic ushered in a new era that led to the adjustments of diverse ecosystems. The pandemic restructured the global socio-economic events which prompted several adaptation measures as a response mechanism to cushion the negative impact of the disease pandemic. Critical health safety actions were imperative to curtail the spread of the disease such as wearing personal protective equipment (PPEs), masks, goggles, and using sanitizers for disinfection purposes. The daily demands for the products by individuals and medical personnel heightened their production and consumption, leading to a corresponding increase of COVID-19 wastes in the environment following indiscriminate waste disposal and poor waste management. The persistent occurrence of COVID-19 wastes aggravated microplastics (MPs) contamination in the aquatic ecosystem following the breakdown of PPEs-based plastics via oxidation, fragmentation, and photo-degradation actions. These MPs are transported in the aquatic environment via surface runoff and wind action, apart from discrete sources. MPs' presence in the aquatic systems is not without repercussions. Ingestion of MPs by aquatic organisms can cause several diseases (e.g., poor growth, oxidative distress, neurotoxicity, developmental toxicity, reproductive toxicity, immunotoxicity, and organ toxicity). Humans are at high risk of MPs uptake. Apart from aerial and soil contamination sources, consumption of aquatic food products is a critical pathway of MPs into the human body. MP toxicities in humans include liver disorder, respiratory failure, infertility, hormonal imbalance, diarrhea, developmental disorder, and mortality. Measures to alleviate the effect of COVID-19 waste litters include effective waste management plans and the adoption of technologies to extract cum degrade MPs from the aquatic and terrestrial environment.
Показать больше [+] Меньше [-]Ключевые слова АГРОВОК
Библиографическая информация
Эту запись предоставил University of Tehran