AGRIS — международная информационная система по сельскохозяйственным наукам и технологиям

A methodological framework for identifying potential sources of soil heavy metal pollution based on machine learning: A case study in the Yangtze Delta, China

2019

Jia, Xiaolin | Hu, Bifeng | Marchant, Ben P. | Zhou, Lianqing | Shi, Zhou | Zhu, Youwei | Zhejiang University [Hangzhou, China] | Unité de Science du Sol (Orléans) (URSols) ; Institut National de la Recherche Agronomique (INRA) | InfoSol (InfoSol) ; Institut National de la Recherche Agronomique (INRA) | British Geological Survey (BGS) | Ministry of Agriculture


Библиографическая информация
Издатель
HAL CCSD, Elsevier
Другие темы
Bivariate local moran's i analysis; Heavy metal pollution; Potentially polluting enterprises; Source identification; Multinomial naive bayesian methods; [sde.es]environmental sciences/environment and society; [info.info-mo]computer science [cs]/modeling and simulation
Язык
Английский
ISBN Международный стандартный книжный номер
0004710882000
ISSN
0269-7491, 1873-6424, 02625160, 31031218
Тип
Info:eu-Repo/semantics/article; Journal Articles
Источник
ISSN: 0269-7491, EISSN: 1873-6424, Environmental Pollution, https://hal.inrae.fr/hal-02625160, Environmental Pollution, 2019, 250, pp.601 - 609. ⟨10.1016/j.envpol.2019.04.047⟩

2024-09-16
Dublin Core
Посмотрите в Google Scholar
If you notice any incorrect information relating to this record, please contact us at agris@fao.org agris@fao.org