Stochastic simulation of settlement prediction of shallow foundations based on a deterministic artificial neural network model
2005
Shahin, M. | Jaksa, M. | Maier, H. | Zerger, A. | Argent, R. | International Congress on Modelling and Simulation (16th : 2005 : Melbourne, Victoria)
© 2005 Modelling & Simulation Society of Australia & New Zealand
Показать больше [+] Меньше [-]The problem of estimating the settlement of shal-low foundations on granular soils is complex and not yet entirely understood. In the past, many em-pirical and theoretical methods have been devel-oped for predicting the settlement of shallow foun-dations on granular soils; however, these methods are far from accurate and consistent. In recent times, artificial neural networks (ANNs) have been used for settlement prediction of shallow founda-tions on granular soils and have shown to outper-form the most commonly used traditional methods. However, despite the relative advantage of the ANN based approach, it is like most traditional methods in the sense that it is based on a determi-nistic approach that does not take into account the considerable level of uncertainty that may affect the magnitude of the predicted settlement. Thus, it provides single values of settlement with no indi-cation of the level of risk associated with these values. In this paper, an alternative stochastic ap-proach that considers the uncertainty associated with the predicted settlement from a deterministic ANN model is provided. The proposed stochastic approach is based on combining Monte Carlo simulation with the deterministic ANN model from which a set of stochastic design charts for settlement prediction of shallow foundations on granular soils is developed. The charts will enable the designer to make informed decisions regarding the level of risk associated with predicted settle-ments and consequently provide a more realistic indication of what the actual settlement might be.
Показать больше [+] Меньше [-]M. A. Shahin, M. B. Jaksa and H. R. Maier
Показать больше [+] Меньше [-]http://www.mssanz.org.au/modsim05/
Показать больше [+] Меньше [-]Ключевые слова АГРОВОК
Библиографическая информация
Эту запись предоставил University of Adelaide