Plastic Responses of Iris pumila Functional and Mechanistic Leaf Traits to Experimental Warming
Katarina Hočevar | Ana Vuleta | Sanja Manitašević Jovanović
Phenotypic plasticity is an important adaptive strategy that enables plants to respond to environmental changes, particularly temperature fluctuations associated with global warming. In this study, the phenotypic plasticity of Iris pumila leaf traits in response to an elevated temperature (by 1 °:C) was investigated under controlled experimental conditions. In particular, we investigated important functional and mechanistic leaf traits: specific leaf area (SLA), leaf dry matter content (LDMC), specific leaf water content (SLWC), stomatal density (SD), leaf thickness (LT), and chlorophyll content. The results revealed that an elevated temperature induced trait-specific plastic responses, with mechanistic traits exhibiting greater plasticity than functional traits, reflecting their role in short-term acclimation. SLA and SD increased at higher temperatures, promoting photosynthesis and gas exchange, while reductions in SLWC, LDMC, LT, and chlorophyll content suggest a trade-off in favor of growth and metabolic activity over structural investment. Notably, chlorophyll content exhibited the highest plasticity, emphasizing its crucial role in modulating photosynthetic efficiency under thermal stress. Correlation analyses revealed strong phenotypic integration between leaf traits, with distinct trait relationships emerging under different temperature conditions. These findings suggest that I. pumila employs both rapid physiological adjustments and longer-term structural strategies to cope with thermal stress, with mechanistic traits facilitating rapid adjustments and functional traits maintaining ecological stability.
Показать больше [+] Меньше [-]Ключевые слова АГРОВОК
Библиографическая информация
Эту запись предоставил Multidisciplinary Digital Publishing Institute