Resistance to Triazoles in Populations of Mycosphaerella fijiensis and M. musicola from the Sigatoka Disease Complex from Commercial Banana Plantations in Minas Gerais and São Paulo, Brazil
Abimael Gomes da Silva | Tatiane Carla Silva | Silvino Intra Moreira | Tamiris Yoshie Kiyama Oliveira | Felix Sebastião Christiano | Daniel Macedo de Souza | Gabriela Valério Leardine | Lucas Matheus de Deus Paes Gonçalves | Maria Cândida de Godoy Gasparoto | Bart A. Fraaije | Gustavo Henrique Goldman | Paulo Cezar Ceresini
The sterol demethylation inhibitors (DMIs) are among the most widely used fungicides for controlling black Sigatoka (Mycosphaerella fijiensis) and yellow Sigatoka (Mycosphaerella musicola) in banana plantations in Brazil. Black Sigatoka is considered more important due to causing yield losses of up to 100% in commercial banana crops under predisposing conditions. In contrast, yellow Sigatoka is important due to its widespread occurrence in the country. This study aimed to determine the current sensitivity levels of Mf and Mm populations to DMI fungicides belonging to the chemical group of triazoles. Populations of both species were sampled from commercial banana plantations in Registro, Vale do Ribeira, Sã:o Paulo (SP), Ilha Solteira, Northwestern SP, and Janaú:ba, Northern Minas Gerais, and were further characterized phenotypically. Additionally, allelic variation in the CYP51 gene was analyzed in populations of these pathogens to identify and characterize major mutations and/or mechanisms potentially associated with resistance. Sensitivity to the triazoles propiconazole and tebuconazole was determined by calculating the 50% inhibitory concentration of mycelial growth (EC50) based on dose&ndash:response curves ranging from 0 to 5 µ:g mL&minus:1. Variation in sensitivity to fungicides was evident with all nine Mf isolates showing moderate resistance levels to both propiconazole or tebuconazole, while 11 out of 42 Mm strains tested showed low to moderate levels of resistance to these triazoles. Mutations leading to CYP51 substitutions Y136F, Y461N/H, and Y463D in Mm and Y461D, G462D, and Y463D in Mf were associated with low or moderate levels of resistance to the triazoles. Interestingly, Y461H have not been reported before in Mm or Mf populations, and this alteration was found in combination with V106D and A446S. More complex CYP51 variants and CYP51 promoter inserts associated with upregulation of the target protein were not detected and can explain the absence of highly DMI-resistant strains in Brazil. Disease management programs that minimize reliance on fungicide sprays containing triazoles will be needed to slow down the further evolution and spread of novel CYP51 variants in Mf and Mm populations in Brazil.
Показать больше [+] Меньше [-]Ключевые слова АГРОВОК
Библиографическая информация
Эту запись предоставил Multidisciplinary Digital Publishing Institute