Aging-Invariant Sheep Face Recognition Through Feature Decoupling
Suhui Liu | Chuanzhong Xuan | Zhaohui Tang | Guangpu Wang | Xinyu Gao | Zhipan Wang
Precise recognition of individual ovine specimens plays a pivotal role in implementing smart agricultural platforms and optimizing herd management systems. With the development of deep learning technology, sheep face recognition provides an efficient and contactless solution for individual sheep identification. However, with the growth of sheep, their facial features keep changing, which poses challenges for existing sheep face recognition models to maintain accuracy across the dynamic changes in facial features over time, making it difficult to meet practical needs. To address this limitation, we propose the lifelong biometric learning of the sheep face network (LBL-SheepNet), a feature decoupling network designed for continuous adaptation to ovine facial changes, and constructed a dataset of 31,200 images from 55 sheep tracked monthly from 1 to 12 months of age. The LBL-SheepNet model addresses dynamic variations in facial features during sheep growth through a multi-module architectural framework. Firstly, a Squeeze-and-Excitation (SE) module enhances discriminative feature representation through adaptive channel-wise recalibration. Then, a nonlinear feature decoupling module employs a hybrid channel-batch attention mechanism to separate age-related features from identity-specific characteristics. Finally, a correlation analysis module utilizes adversarial learning to suppress age-biased feature interference, ensuring focus on age-invariant identifiers. Experimental results demonstrate that LBL-SheepNet achieves 95.5% identification accuracy and 95.3% average precision on the sheep face dataset. This study introduces a lifelong biometric learning (LBL) mechanism to mitigate recognition accuracy degradation caused by dynamic facial feature variations in growing sheep. By designing a feature decoupling network integrated with adversarial age-invariant learning, the proposed method addresses the performance limitations of existing models in long-term individual identification.
Показать больше [+] Меньше [-]Ключевые слова АГРОВОК
Библиографическая информация
Эту запись предоставил Multidisciplinary Digital Publishing Institute