Уточнить поиск
Результаты 31-40 из 511
Use of time lapse microscopy to visualize anoxia-induced suspended animation in C. elegans embryos Полный текст
2012
Garcia, Anastacia M. | Ladage, Mary L. | Padilla, Pamela A.
Caenorhabdits elegans has been used extensively in the study of stress resistance, which is facilitated by the transparency of the adult and embryo stages as well as by the availability of genetic mutants and transgenic strains expressing a myriad of fusion proteins1-4. In addition, dynamic processes such as cell division can be viewed using fluorescently labeled reporter proteins. The study of mitosis can be facilitated through the use of time-lapse experiments in various systems including intact organisms; thus the early C. elegans embryo is well suited for this study. Presented here is a technique by which in vivo imaging of sub-cellular structures in response to anoxic (99.999% N2; <2 ppm O2) stress is possible using a simple gas flow through setup on a high-powered microscope. A microincubation chamber is used in conjunction with nitrogen gas flow through and a spinning disc confocal microscope to create a controlled environment in which animals can be imaged in vivo. Using GFP-tagged gamma tubulin and histone, the dynamics and arrest of cell division can be monitored before, during and after exposure to an oxygen-deprived environment. The results of this technique are high resolution, detailed videos and images of cellular structures within blastomeres of embryos exposed to oxygen deprivation.
Показать больше [+] Меньше [-]Corneal donor tissue preparation for endothelial keratoplasty Полный текст
2012
Woodward, Maria A. | Titus, Michael | Mavin, Kyle | Shtein, Roni M.
Over the past ten years, corneal transplantation surgical techniques have undergone revolutionary changes1,2. Since its inception, traditional full thickness corneal transplantation has been the treatment to restore sight in those limited by corneal disease. Some disadvantages to this approach include a high degree of post-operative astigmatism, lack of predictable refractive outcome, and disturbance to the ocular surface. The development of Descemet's stripping endothelial keratoplasty (DSEK), transplanting only the posterior corneal stroma, Descemet's membrane, and endothelium, has dramatically changed treatment of corneal endothelial disease. DSEK is performed through a smaller incision; this technique avoids 'open sky' surgery with its risk of hemorrhage or expulsion, decreases the incidence of postoperative wound dehiscence, reduces unpredictable refractive outcomes, and may decrease the rate of transplant rejection3-6. Initially, cornea donor posterior lamellar dissection for DSEK was performed manually1 resulting in variable graft thickness and damage to the delicate corneal endothelial tissue during tissue processing. Automated lamellar dissection (Descemet's stripping automated endothelial keratoplasty, DSAEK) was developed to address these issues. Automated dissection utilizes the same technology as LASIK corneal flap creation with a mechanical microkeratome blade that helps to create uniform and thin tissue grafts for DSAEK surgery with minimal corneal endothelial cell loss in tissue processing. Eye banks have been providing full thickness corneas for surgical transplantation for many years. In 2006, eye banks began to develop methodologies for supplying precut corneal tissue for endothelial keratoplasty. With the input of corneal surgeons, eye banks have developed thorough protocols to safely and effectively prepare posterior lamellar tissue for DSAEK surgery. This can be performed preoperatively at the eye bank. Research shows no significant difference in terms of the quality of the tissue7 or patient outcomes8,9 using eye bank precut tissue versus surgeon-prepared tissue for DSAEK surgery. For most corneal surgeons, the availability of precut DSAEK corneal tissue saves time and money10, and reduces the stress of performing the donor corneal dissection in the operating room. In part because of the ability of the eye banks to provide high quality posterior lamellar corneal in a timely manner, DSAEK has become the standard of care for surgical management of corneal endothelial disease. The procedure that we are describing is the preparation of the posterior lamellar cornea at the eye bank for transplantation in DSAEK surgery (Figure 1).
Показать больше [+] Меньше [-]Visualization and analysis of blood flow and oxygen consumption in hepatic microcirculation: application to an acute hepatitis model Полный текст
2012
Tsukada, Kosuke | Suematsu, Makoto
There is a considerable discrepancy between oxygen supply and demand in the liver because hepatic oxygen consumption is relatively high but about 70% of the hepatic blood supply is poorly oxygenated portal vein blood derived from the gastrointestinal tract and spleen. Oxygen is delivered to hepatocytes by blood flowing from a terminal branch of the portal vein to a central venule via sinusoids, and this makes an oxygen gradient in hepatic lobules. The oxygen gradient is an important physical parameter that involves the expression of enzymes upstream and downstream in hepatic microcirculation, but the lack of techniques for measuring oxygen consumption in the hepatic microcirculation has delayed the elucidation of mechanisms relating to oxygen metabolism in liver. We therefore used FITC-labeled erythrocytes to visualize the hepatic microcirculation and used laser-assisted phosphorimetry to measure the partial pressure of oxygen in the microvessels there. Noncontact and continuous optical measurement can quantify blood flow velocities, vessel diameters, and oxygen gradients related to oxygen consumption in the liver. In an acute hepatitis model we made by administering acetaminophen to mice we observed increased oxygen pressure in both portal and central venules but a decreased oxygen gradient in the sinusoids, indicating that hepatocyte necrosis in the pericentral zone could shift the oxygen pressure up and affect enzyme expression in the periportal zone. In conclusion, our optical methods for measuring hepatic hemodynamics and oxygen consumption can reveal mechanisms related to hepatic disease.
Показать больше [+] Меньше [-]Driving simulation in the clinic: testing visual exploratory behavior in daily life activities in patients with visual field defects Полный текст
2012
Hamel, Johanna | Kraft, Antje | Ohl, Sven | De Beukelaer, Sophie | Audebert, Heinrich J. | Brandt, Stephan A.
Patients suffering from homonymous hemianopia after infarction of the posterior cerebral artery (PCA) report different degrees of constraint in daily life, despite similar visual deficits. We assume this could be due to variable development of compensatory strategies such as altered visual scanning behavior. Scanning compensatory therapy (SCT) is studied as part of the visual training after infarction next to vision restoration therapy. SCT consists of learning to make larger eye movements into the blind field enlarging the visual field of search, which has been proven to be the most useful strategy1, not only in natural search tasks but also in mastering daily life activities2. Nevertheless, in clinical routine it is difficult to identify individual levels and training effects of compensatory behavior, since it requires measurement of eye movements in a head unrestrained condition. Studies demonstrated that unrestrained head movements alter the visual exploratory behavior compared to a head-restrained laboratory condition3. Martin et al.4 and Hayhoe et al.5 showed that behavior demonstrated in a laboratory setting cannot be assigned easily to a natural condition. Hence, our goal was to develop a study set-up which uncovers different compensatory oculomotor strategies quickly in a realistic testing situation: Patients are tested in the clinical environment in a driving simulator. SILAB software (Wuerzburg Institute for Traffic Sciences GmbH (WIVW)) was used to program driving scenarios of varying complexity and recording the driver's performance. The software was combined with a head mounted infrared video pupil tracker, recording head- and eye-movements (EyeSeeCam, University of Munich Hospital, Clinical Neurosciences). The positioning of the patient in the driving simulator and the positioning, adjustment and calibration of the camera is demonstrated. Typical performances of a patient with and without compensatory strategy and a healthy control are illustrated in this pilot study. Different oculomotor behaviors (frequency and amplitude of eye- and head-movements) are evaluated very quickly during the drive itself by dynamic overlay pictures indicating where the subjects gaze is located on the screen, and by analyzing the data. Compensatory gaze behavior in a patient leads to a driving performance comparable to a healthy control, while the performance of a patient without compensatory behavior is significantly worse. The data of eye- and head-movement-behavior as well as driving performance are discussed with respect to different oculomotor strategies and in a broader context with respect to possible training effects throughout the testing session and implications on rehabilitation potential.
Показать больше [+] Меньше [-]Isolation and culture of rat embryonic neural cells: a quick protocol Полный текст
2012
Pacifici, Marco | Peruzzi, Francesca
We are describing a quick method to dissociate and culture hippocampal or cortical neurons from E15-17 rat embryos. The procedure can be applied successfully to the isolation of mouse and human primary neurons and neural progenitors. Dissociated neurons are maintained in serum-free medium up to several weeks. These cultures can be used for nucleofection, immunocytochemistry, nucleic acids preparation, as well as electrophysiology. Older neuronal cultures can also be transfected with a good efficiency rate by lentiviral transduction and, less efficiently, with calcium phosphate or lipid-based methods such as lipofectamine.
Показать больше [+] Меньше [-]Heterotypic three-dimensional In Vitro modeling of stromal-epithelial interactions during ovarian cancer initiation and progression Полный текст
2012
Lawrenson, Kate | Grun, Barbara | Gayther, Simon A.
Epithelial ovarian cancers (EOCs) are the leading cause of death from gynecological malignancy in Western societies. Despite advances in surgical treatments and improved platinum-based chemotherapies, there has been little improvement in EOC survival rates for more than four decades 1,2. Whilst stage I tumors have 5-year survival rates >85%, survival rates for stage III/IV disease are <40%. Thus, the high rates of mortality for EOC could be significantly decreased if tumors were detected at earlier, more treatable, stages 3-5. At present, the molecular genetic and biological basis of early stage disease development is poorly understood. More specifically, little is known about the role of the microenvironment during tumor initiation; but known risk factors for EOCs (e.g. age and parity) suggest that the microenvironment plays a key role in the early genesis of EOCs. We therefore developed three-dimensional heterotypic models of both the normal ovary and of early stage ovarian cancers. For the normal ovary, we co-cultured normal ovarian surface epithelial (IOSE) and normal stromal fibroblast (INOF) cells, immortalized by retrovrial transduction of the catalytic subunit of human telomerase holoenzyme (hTERT) to extend the lifespan of these cells in culture. To model the earliest stages of ovarian epithelial cell transformation, overexpression of the CMYC oncogene in IOSE cells, again co-cultured with INOF cells. These heterotypic models were used to investigate the effects of aging and senescence on the transformation and invasion of epithelial cells. Here we describe the methodological steps in development of these three-dimensional model; these methodologies aren't specific to the development of normal ovary and ovarian cancer tissues, and could be used to study other tissue types where stromal and epithelial cell interactions are a fundamental aspect of the tissue maintenance and disease development.
Показать больше [+] Меньше [-]Micro 3d printing using a digital projector and its application in the study of soft materials mechanics Полный текст
2012
Lee, Howon | Fang, Nicholas X.
Buckling is a classical topic in mechanics. While buckling has long been studied as one of the major structural failure modes1, it has recently drawn new attention as a unique mechanism for pattern transformation. Nature is full of such examples where a wealth of exotic patterns are formed through mechanical instability2-5. Inspired by this elegant mechanism, many studies have demonstrated creation and transformation of patterns using soft materials such as elastomers and hydrogels6-11. Swelling gels are of particular interest because they can spontaneously trigger mechanical instability to create various patterns without the need of external force6-10. Recently, we have reported demonstration of full control over buckling pattern of micro-scaled tubular gels using projection micro-stereolithography (PμSL), a three-dimensional (3D) manufacturing technology capable of rapidly converting computer generated 3D models into physical objects at high resolution12,13. Here we present a simple method to build up a simplified PμSL system using a commercially available digital data projector to study swelling-induced buckling instability for controlled pattern transformation. A simple desktop 3D printer is built using an off-the-shelf digital data projector and simple optical components such as a convex lens and a mirror14. Cross-sectional images extracted from a 3D solid model is projected on the photosensitive resin surface in sequence, polymerizing liquid resin into a desired 3D solid structure in a layer-by-layer fashion. Even with this simple configuration and easy process, arbitrary 3D objects can be readily fabricated with sub-100 μm resolution. This desktop 3D printer holds potential in the study of soft material mechanics by offering a great opportunity to explore various 3D geometries. We use this system to fabricate tubular shaped hydrogel structure with different dimensions. Fixed on the bottom to the substrate, the tubular gel develops inhomogeneous stress during swelling, which gives rise to buckling instability. Various wavy patterns appear along the circumference of the tube when the gel structures undergo buckling. Experiment shows that circumferential buckling of desired mode can be created in a controlled manner. Pattern transformation of three-dimensionally structured tubular gels has significant implication not only in mechanics and material science, but also in many other emerging fields such as tunable matamaterials.
Показать больше [+] Меньше [-]Single cell measurement of dopamine release with simultaneous voltage-clamp and amperometry Полный текст
2012
Saha, Kaustuv | Swant, Jarod | Khoshbouei, Habibeh
After its release into the synaptic cleft, dopamine exerts its biological properties via its pre- and post-synaptic targets1. The dopamine signal is terminated by diffusion2-3, extracellular enzymes4, and membrane transporters5. The dopamine transporter, located in the peri-synaptic cleft of dopamine neurons clears the released amines through an inward dopamine flux (uptake). The dopamine transporter can also work in reverse direction to release amines from inside to outside in a process called outward transport or efflux of dopamine5. More than 20 years ago Sulzer et al. reported the dopamine transporter can operate in two modes of activity: forward (uptake) and reverse (efflux)5. The neurotransmitter released via efflux through the transporter can move a large amount of dopamine to the extracellular space, and has been shown to play a major regulatory role in extracellular dopamine homeostasis6. Here we describe how simultaneous patch clamp and amperometry recording can be used to measure released dopamine via the efflux mechanism with millisecond time resolution when the membrane potential is controlled. For this, whole-cell current and oxidative (amperometric) signals are measured simultaneously using an Axopatch 200B amplifier (Molecular Devices, with a low-pass Bessel filter set at 1,000 Hz for whole-cell current recording). For amperometry recording a carbon fiber electrode is connected to a second amplifier (Axopatch 200B) and is placed adjacent to the plasma membrane and held at +700 mV. The whole-cell and oxidative (amperometric) currents can be recorded and the current-voltage relationship can be generated using a voltage step protocol. Unlike the usual amperometric calibration, which requires conversion to concentration, the current is reported directly without considering the effective volume7. Thus, the resulting data represent a lower limit to dopamine efflux because some transmitter is lost to the bulk solution.
Показать больше [+] Меньше [-]Design and assembly of an ultra-light motorized microdrive for chronic neural recordings in small animals Полный текст
2012
Otchy, Timothy M. | Ӧlveczky, Bence P.
The ability to chronically record from populations of neurons in freely behaving animals has proven an invaluable tool for dissecting the function of neural circuits underlying a variety of natural behaviors, including navigation1 , decision making 2,3, and the generation of complex motor sequences4,5,6. Advances in precision machining has allowed for the fabrication of light-weight devices suitable for chronic recordings in small animals, such as mice and songbirds. The ability to adjust the electrode position with small remotely controlled motors has further increased the recording yield in various behavioral contexts by reducing animal handling.6,7 Here we describe a protocol to build an ultra-light motorized microdrive for long-term chronic recordings in small animals. Our design evolved from an earlier published version7, and has been adapted for ease-of use and cost-effectiveness to be more practical and accessible to a wide array of researchers. This proven design 8,9,10,11 allows for fine, remote positioning of electrodes over a range of ~ 5 mm and weighs less than 750 mg when fully assembled. We present the complete protocol for how to build and assemble these drives, including 3D CAD drawings for all custom microdrive components.
Показать больше [+] Меньше [-]Flow cytometric isolation of primary murine type ii alveolar epithelial cells for functional and molecular studies Полный текст
2012
Gereke, Marcus | Autengruber, Andrea | Gröbe, Lothar | Jeron, Andreas | Bruder, Dunja | Stegemann-Koniszewski, Sabine
Throughout the last years, the contribution of alveolar type II epithelial cells (AECII) to various aspects of immune regulation in the lung has been increasingly recognized. AECII have been shown to participate in cytokine production in inflamed airways and to even act as antigen-presenting cells in both infection and T-cell mediated autoimmunity 1-8. Therefore, they are especially interesting also in clinical contexts such as airway hyper-reactivity to foreign and self-antigens as well as infections that directly or indirectly target AECII. However, our understanding of the detailed immunologic functions served by alveolar type II epithelial cells in the healthy lung as well as in inflammation remains fragmentary. Many studies regarding AECII function are performed using mouse or human alveolar epithelial cell lines 9-12. Working with cell lines certainly offers a range of benefits, such as the availability of large numbers of cells for extensive analyses. However, we believe the use of primary murine AECII allows a better understanding of the role of this cell type in complex processes like infection or autoimmune inflammation. Primary murine AECII can be isolated directly from animals suffering from such respiratory conditions, meaning they have been subject to all additional extrinsic factors playing a role in the analyzed setting. As an example, viable AECII can be isolated from mice intranasally infected with influenza A virus, which primarily targets these cells for replication 13. Importantly, through ex vivo infection of AECII isolated from healthy mice, studies of the cellular responses mounted upon infection can be further extended. Our protocol for the isolation of primary murine AECII is based on enzymatic digestion of the mouse lung followed by labeling of the resulting cell suspension with antibodies specific for CD11c, CD11b, F4/80, CD19, CD45 and CD16/CD32. Granular AECII are then identified as the unlabeled and sideward scatter high (SSChigh) cell population and are separated by fluorescence activated cell sorting 3. In comparison to alternative methods of isolating primary epithelial cells from mouse lungs, our protocol for flow cytometric isolation of AECII by negative selection yields untouched, highly viable and pure AECII in relatively short time. Additionally, and in contrast to conventional methods of isolation by panning and depletion of lymphocytes via binding of antibody-coupled magnetic beads 14, 15, flow cytometric cell-sorting allows discrimination by means of cell size and granularity. Given that instrumentation for flow cytometric cell sorting is available, the described procedure can be applied at relatively low costs. Next to standard antibodies and enzymes for lung disintegration, no additional reagents such as magnetic beads are required. The isolated cells are suitable for a wide range of functional and molecular studies, which include in vitro culture and T-cell stimulation assays as well as transcriptome, proteome or secretome analyses 3, 4.
Показать больше [+] Меньше [-]